用人工神经网络估算大块超导体的临界电流密度

IF 5.6 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Gangling Wu, Huadong Yong
{"title":"用人工神经网络估算大块超导体的临界电流密度","authors":"Gangling Wu,&nbsp;Huadong Yong","doi":"10.1016/j.supcon.2023.100055","DOIUrl":null,"url":null,"abstract":"<div><p>In the applications of superconducting materials, the critical current density <span><math><mrow><msub><mi>J</mi><mi>c</mi></msub><mrow><mfenced><mrow><mi>B</mi></mrow></mfenced></mrow></mrow></math></span> is a crucial performance parameter. The conventional method of measuring <span><math><mrow><msub><mi>J</mi><mi>c</mi></msub><mrow><mfenced><mrow><mi>B</mi></mrow></mfenced></mrow></mrow></math></span> of bulk superconductor is magnetization method. However, there are errors in the estimation of <span><math><mrow><msub><mi>J</mi><mi>c</mi></msub><mrow><mfenced><mrow><mi>B</mi></mrow></mfenced></mrow></mrow></math></span> in the lower field, and the estimation is not applicable in the region where the magnetic field reverses. In this paper, <span><math><mrow><msub><mi>J</mi><mi>c</mi></msub><mrow><mfenced><mrow><mi>B</mi></mrow></mfenced></mrow></mrow></math></span> of the bulk superconductor is determined by the hysteresis and magnetostriction loops with artificial neural network (ANN), respectively. Compared with double-output ANN, the critical current density obtained by single-output ANN is more accurate. Finally, the prediction results given by the hysteresis and magnetostriction loops are discussed.</p></div>","PeriodicalId":101185,"journal":{"name":"Superconductivity","volume":"7 ","pages":"Article 100055"},"PeriodicalIF":5.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of critical current density of bulk superconductor with artificial neural network\",\"authors\":\"Gangling Wu,&nbsp;Huadong Yong\",\"doi\":\"10.1016/j.supcon.2023.100055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the applications of superconducting materials, the critical current density <span><math><mrow><msub><mi>J</mi><mi>c</mi></msub><mrow><mfenced><mrow><mi>B</mi></mrow></mfenced></mrow></mrow></math></span> is a crucial performance parameter. The conventional method of measuring <span><math><mrow><msub><mi>J</mi><mi>c</mi></msub><mrow><mfenced><mrow><mi>B</mi></mrow></mfenced></mrow></mrow></math></span> of bulk superconductor is magnetization method. However, there are errors in the estimation of <span><math><mrow><msub><mi>J</mi><mi>c</mi></msub><mrow><mfenced><mrow><mi>B</mi></mrow></mfenced></mrow></mrow></math></span> in the lower field, and the estimation is not applicable in the region where the magnetic field reverses. In this paper, <span><math><mrow><msub><mi>J</mi><mi>c</mi></msub><mrow><mfenced><mrow><mi>B</mi></mrow></mfenced></mrow></mrow></math></span> of the bulk superconductor is determined by the hysteresis and magnetostriction loops with artificial neural network (ANN), respectively. Compared with double-output ANN, the critical current density obtained by single-output ANN is more accurate. Finally, the prediction results given by the hysteresis and magnetostriction loops are discussed.</p></div>\",\"PeriodicalId\":101185,\"journal\":{\"name\":\"Superconductivity\",\"volume\":\"7 \",\"pages\":\"Article 100055\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superconductivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772830723000200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772830723000200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在超导材料的应用中,临界电流密度JcB是一个至关重要的性能参数。测量大块超导体JcB的常规方法是磁化法。然而,在较低场中JcB的估计中存在误差,并且该估计不适用于磁场反转的区域。本文用人工神经网络分别通过磁滞回线和磁致伸缩回线来确定大块超导体的JcB。与双输出神经网络相比,单输出神经网络得到的临界电流密度更准确。最后,讨论了磁滞回线和磁致伸缩回线的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of critical current density of bulk superconductor with artificial neural network

In the applications of superconducting materials, the critical current density JcB is a crucial performance parameter. The conventional method of measuring JcB of bulk superconductor is magnetization method. However, there are errors in the estimation of JcB in the lower field, and the estimation is not applicable in the region where the magnetic field reverses. In this paper, JcB of the bulk superconductor is determined by the hysteresis and magnetostriction loops with artificial neural network (ANN), respectively. Compared with double-output ANN, the critical current density obtained by single-output ANN is more accurate. Finally, the prediction results given by the hysteresis and magnetostriction loops are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信