{"title":"地球温带大气中大尺度涡旋-平均流相互作用","authors":"Noboru Nakamura","doi":"10.1146/annurev-fluid-121021-035602","DOIUrl":null,"url":null,"abstract":"Large-scale circulation of the atmosphere in the Earth's extratropics is dominated by eddies, eastward (westerly) zonal winds, and their interaction. Eddies not only bring about weather variabilities but also help maintain the average state of climate. In recent years, our understanding of how large-scale eddies and mean flows interact in the extratropical atmosphere has advanced significantly due to new dynamical constraints on finite-amplitude eddies and the related eddy-free reference state. This article reviews the theoretical foundations for finite-amplitude Rossby wave activity and related concepts. Theory is then applied to atmospheric data to elucidate how angular momentum is redistributed by the generation, transmission, and dissipation of Rossby waves and to reveal how an anomalously large wave event such as atmospheric blocking may arise from regional eddy-mean flow interaction.Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 56 is January 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"4 9","pages":""},"PeriodicalIF":25.4000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-Scale Eddy-Mean Flow Interaction in the Earth's Extratropical Atmosphere\",\"authors\":\"Noboru Nakamura\",\"doi\":\"10.1146/annurev-fluid-121021-035602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale circulation of the atmosphere in the Earth's extratropics is dominated by eddies, eastward (westerly) zonal winds, and their interaction. Eddies not only bring about weather variabilities but also help maintain the average state of climate. In recent years, our understanding of how large-scale eddies and mean flows interact in the extratropical atmosphere has advanced significantly due to new dynamical constraints on finite-amplitude eddies and the related eddy-free reference state. This article reviews the theoretical foundations for finite-amplitude Rossby wave activity and related concepts. Theory is then applied to atmospheric data to elucidate how angular momentum is redistributed by the generation, transmission, and dissipation of Rossby waves and to reveal how an anomalously large wave event such as atmospheric blocking may arise from regional eddy-mean flow interaction.Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 56 is January 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":50754,\"journal\":{\"name\":\"Annual Review of Fluid Mechanics\",\"volume\":\"4 9\",\"pages\":\"\"},\"PeriodicalIF\":25.4000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-fluid-121021-035602\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-121021-035602","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Large-Scale Eddy-Mean Flow Interaction in the Earth's Extratropical Atmosphere
Large-scale circulation of the atmosphere in the Earth's extratropics is dominated by eddies, eastward (westerly) zonal winds, and their interaction. Eddies not only bring about weather variabilities but also help maintain the average state of climate. In recent years, our understanding of how large-scale eddies and mean flows interact in the extratropical atmosphere has advanced significantly due to new dynamical constraints on finite-amplitude eddies and the related eddy-free reference state. This article reviews the theoretical foundations for finite-amplitude Rossby wave activity and related concepts. Theory is then applied to atmospheric data to elucidate how angular momentum is redistributed by the generation, transmission, and dissipation of Rossby waves and to reveal how an anomalously large wave event such as atmospheric blocking may arise from regional eddy-mean flow interaction.Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 56 is January 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.