电子调制的单原子基串联催化剂促进二氧化碳光还原为乙醇†

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuaiqi Gong, Baoxin Ni, Xiaoyang He, Jianying Wang, Kun Jiang, Deli Wu, Yulin Min, Hexing Li and Zuofeng Chen
{"title":"电子调制的单原子基串联催化剂促进二氧化碳光还原为乙醇†","authors":"Shuaiqi Gong, Baoxin Ni, Xiaoyang He, Jianying Wang, Kun Jiang, Deli Wu, Yulin Min, Hexing Li and Zuofeng Chen","doi":"10.1039/D3EE02643D","DOIUrl":null,"url":null,"abstract":"<p >In artificial photosynthesis, tandem catalysis has emerged as an attractive approach to promote CO<small><sub>2</sub></small> reduction to value-added multi-carbon (C<small><sub>2+</sub></small>) products through sequential steps at distinct sites. Herein, we investigate the coordination of Cu single atoms (Cu SAs) on In<small><sub>2</sub></small>O<small><sub>3</sub></small> to create a conceptual tandem photocatalyst with orbital hybridization for efficient CO<small><sub>2</sub></small>-to-C<small><sub>2</sub></small> conversion with stoichiometric O<small><sub>2</sub></small> produced in pure water. Our findings reveal that the In<small><sub>2</sub></small>O<small><sub>3</sub></small> domain provides high-coverage *CO intermediates, while the 3-coordinated Cu SAs promote the key C–C coupling. In<small><sub>2</sub></small>O<small><sub>3</sub></small>/Cu–O<small><sub>3</sub></small> exhibits a remarkable ethanol yield rate of 20.7 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small> with a high selectivity of 85.8%, achieved without any sacrificial agent and photosensitizer under visible-light irradiation. <em>In situ</em> spectroscopies and theoretical calculations confirm that In<small><sub>2</sub></small>O<small><sub>3</sub></small>/Cu–O<small><sub>3</sub></small> enables OC–COH coupling and CO<small><sub>2</sub></small>-to-ethanol conversion through the pathway CO<small><sub>2</sub></small> → *COOH → *CO → *OCCOH → *OCH<small><sub>2</sub></small>CH<small><sub>3</sub></small> → ethanol. A set of techniques including X-ray absorption spectroscopy reveal that the 3-coordinated Cu SAs exist in the Cu<small><sup>+</sup></small> state, exhibiting a strong electron-donating capability. The electronic interaction between Cu and In through p–d and d–d hybridizations in In<small><sub>2</sub></small>O<small><sub>3</sub></small>/Cu–O<small><sub>3</sub></small> induces electron redistribution, leading to adjustment of the d band center and electronic localization near the Fermi level, thus facilitating C–C coupling for ethanol production.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 12","pages":" 5956-5969"},"PeriodicalIF":32.4000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic modulation of a single-atom-based tandem catalyst boosts CO2 photoreduction to ethanol†\",\"authors\":\"Shuaiqi Gong, Baoxin Ni, Xiaoyang He, Jianying Wang, Kun Jiang, Deli Wu, Yulin Min, Hexing Li and Zuofeng Chen\",\"doi\":\"10.1039/D3EE02643D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In artificial photosynthesis, tandem catalysis has emerged as an attractive approach to promote CO<small><sub>2</sub></small> reduction to value-added multi-carbon (C<small><sub>2+</sub></small>) products through sequential steps at distinct sites. Herein, we investigate the coordination of Cu single atoms (Cu SAs) on In<small><sub>2</sub></small>O<small><sub>3</sub></small> to create a conceptual tandem photocatalyst with orbital hybridization for efficient CO<small><sub>2</sub></small>-to-C<small><sub>2</sub></small> conversion with stoichiometric O<small><sub>2</sub></small> produced in pure water. Our findings reveal that the In<small><sub>2</sub></small>O<small><sub>3</sub></small> domain provides high-coverage *CO intermediates, while the 3-coordinated Cu SAs promote the key C–C coupling. In<small><sub>2</sub></small>O<small><sub>3</sub></small>/Cu–O<small><sub>3</sub></small> exhibits a remarkable ethanol yield rate of 20.7 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small> with a high selectivity of 85.8%, achieved without any sacrificial agent and photosensitizer under visible-light irradiation. <em>In situ</em> spectroscopies and theoretical calculations confirm that In<small><sub>2</sub></small>O<small><sub>3</sub></small>/Cu–O<small><sub>3</sub></small> enables OC–COH coupling and CO<small><sub>2</sub></small>-to-ethanol conversion through the pathway CO<small><sub>2</sub></small> → *COOH → *CO → *OCCOH → *OCH<small><sub>2</sub></small>CH<small><sub>3</sub></small> → ethanol. A set of techniques including X-ray absorption spectroscopy reveal that the 3-coordinated Cu SAs exist in the Cu<small><sup>+</sup></small> state, exhibiting a strong electron-donating capability. The electronic interaction between Cu and In through p–d and d–d hybridizations in In<small><sub>2</sub></small>O<small><sub>3</sub></small>/Cu–O<small><sub>3</sub></small> induces electron redistribution, leading to adjustment of the d band center and electronic localization near the Fermi level, thus facilitating C–C coupling for ethanol production.</p>\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\" 12\",\"pages\":\" 5956-5969\"},\"PeriodicalIF\":32.4000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/ee/d3ee02643d\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/ee/d3ee02643d","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在人工光合作用中,串联催化已成为一种有吸引力的方法,通过不同位点的连续步骤促进CO2还原为增值的多碳(C2+)产物。在此,我们研究了Cu单原子(Cu SAs)在In2O3上的配位,以创建一个概念性的具有轨道杂化的串联光催化剂,用于在纯水中产生的化学测量O2的二氧化碳到c2的有效转化。我们的研究结果表明,In2O3结构域提供了高覆盖的*CO中间体,而3-配位的Cu sa促进了关键的C-C耦合。在不添加任何牺牲剂和光敏剂的情况下,In2O3/ Cu-O3在可见光照射下的乙醇收率为20.7 μmol g−1 h−1,选择性为85.8%。原位光谱和理论计算证实,In2O3/ Cu-O3通过CO2→*COOH→*CO→*OCCOH→*OCH2CH3→乙醇途径实现OC-COH偶联和CO2-to-乙醇转化。包括x射线吸收光谱在内的一系列技术表明,3配位Cu sa存在于Cu+态,具有很强的给电子能力。在In2O3/Cu - o3中,Cu和In通过p-d和d - d杂化发生电子相互作用,导致电子重分布,导致d能带中心的调整和电子在费米能级附近的定位,从而促进了乙醇生产中的C-C耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electronic modulation of a single-atom-based tandem catalyst boosts CO2 photoreduction to ethanol†

Electronic modulation of a single-atom-based tandem catalyst boosts CO2 photoreduction to ethanol†

In artificial photosynthesis, tandem catalysis has emerged as an attractive approach to promote CO2 reduction to value-added multi-carbon (C2+) products through sequential steps at distinct sites. Herein, we investigate the coordination of Cu single atoms (Cu SAs) on In2O3 to create a conceptual tandem photocatalyst with orbital hybridization for efficient CO2-to-C2 conversion with stoichiometric O2 produced in pure water. Our findings reveal that the In2O3 domain provides high-coverage *CO intermediates, while the 3-coordinated Cu SAs promote the key C–C coupling. In2O3/Cu–O3 exhibits a remarkable ethanol yield rate of 20.7 μmol g−1 h−1 with a high selectivity of 85.8%, achieved without any sacrificial agent and photosensitizer under visible-light irradiation. In situ spectroscopies and theoretical calculations confirm that In2O3/Cu–O3 enables OC–COH coupling and CO2-to-ethanol conversion through the pathway CO2 → *COOH → *CO → *OCCOH → *OCH2CH3 → ethanol. A set of techniques including X-ray absorption spectroscopy reveal that the 3-coordinated Cu SAs exist in the Cu+ state, exhibiting a strong electron-donating capability. The electronic interaction between Cu and In through p–d and d–d hybridizations in In2O3/Cu–O3 induces electron redistribution, leading to adjustment of the d band center and electronic localization near the Fermi level, thus facilitating C–C coupling for ethanol production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信