涡喷发动机和涡轮联合循环发动机排气系统空气动力学问题综述

IF 11.5 1区 工程技术 Q1 ENGINEERING, AEROSPACE
Zheng Lv, Jinglei Xu, Guangtao Song, Rui Li, Jianhui Ge
{"title":"涡喷发动机和涡轮联合循环发动机排气系统空气动力学问题综述","authors":"Zheng Lv,&nbsp;Jinglei Xu,&nbsp;Guangtao Song,&nbsp;Rui Li,&nbsp;Jianhui Ge","doi":"10.1016/j.paerosci.2023.100956","DOIUrl":null,"url":null,"abstract":"<div><p><span>A review of research progress in the design of the exhaust system for the scramjet and turbine based combined cycle (TBCC) engine is presented. Firstly, the technical challenges encountered in designing the exhaust system for a hypersonic propulsion system are highlighted and discussed, and the performance parameter definition as well as the theoretical thrust prediction for the exhaust system is introduced. The review of scramjet nozzle focuses on three aspects: 1) the design method of the single expansion ramp nozzle (SERN) for the integration of the </span>airframe<span><span> with the propulsion system, in which the design method developments of the two-dimensional (2D) SERN, SERN with lateral expansion and three-dimensional (3D) SERN with shape transition are all summarized; 2) the unique flow phenomena of the scramjet nozzle, including the nonuniform inflow and chemical nonequilibrium flow in SERN; 3) the coupling and interaction of the internal flow with the external </span>freestream<span>. Besides, the design and flow researches of the TBCC exhaust system is also reviewed for three parts: 1) variable geometry design for wide flight range, in which both a 2D and 3D exhaust system are described; 2) the overexpanded flow separation mechanism and its control at low flight Mach number; 3) mode transition from low-speed flowpath (LSF) to high-speed flowpath (HSF) for over-under exhaust system. Through the above summary and analysis, the current status, bottlenecks, and development trend of the exhaust system for an airbreathing hypersonic propulsion system can be further clarified.</span></span></p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"143 ","pages":"Article 100956"},"PeriodicalIF":11.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Review on the aerodynamic issues of the exhaust system for scramjet and turbine based combined cycle engine\",\"authors\":\"Zheng Lv,&nbsp;Jinglei Xu,&nbsp;Guangtao Song,&nbsp;Rui Li,&nbsp;Jianhui Ge\",\"doi\":\"10.1016/j.paerosci.2023.100956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>A review of research progress in the design of the exhaust system for the scramjet and turbine based combined cycle (TBCC) engine is presented. Firstly, the technical challenges encountered in designing the exhaust system for a hypersonic propulsion system are highlighted and discussed, and the performance parameter definition as well as the theoretical thrust prediction for the exhaust system is introduced. The review of scramjet nozzle focuses on three aspects: 1) the design method of the single expansion ramp nozzle (SERN) for the integration of the </span>airframe<span><span> with the propulsion system, in which the design method developments of the two-dimensional (2D) SERN, SERN with lateral expansion and three-dimensional (3D) SERN with shape transition are all summarized; 2) the unique flow phenomena of the scramjet nozzle, including the nonuniform inflow and chemical nonequilibrium flow in SERN; 3) the coupling and interaction of the internal flow with the external </span>freestream<span>. Besides, the design and flow researches of the TBCC exhaust system is also reviewed for three parts: 1) variable geometry design for wide flight range, in which both a 2D and 3D exhaust system are described; 2) the overexpanded flow separation mechanism and its control at low flight Mach number; 3) mode transition from low-speed flowpath (LSF) to high-speed flowpath (HSF) for over-under exhaust system. Through the above summary and analysis, the current status, bottlenecks, and development trend of the exhaust system for an airbreathing hypersonic propulsion system can be further clarified.</span></span></p></div>\",\"PeriodicalId\":54553,\"journal\":{\"name\":\"Progress in Aerospace Sciences\",\"volume\":\"143 \",\"pages\":\"Article 100956\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Aerospace Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376042123000726\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Aerospace Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376042123000726","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

摘要

综述了超燃冲压发动机与涡轮联合循环发动机排气系统设计的研究进展。首先,重点讨论了高超声速推进系统排气系统设计中遇到的技术难题,介绍了排气系统的性能参数定义和理论推力预测。对超燃冲压发动机喷管的研究重点进行了三个方面的综述:1)针对机身与推进系统一体化的单膨胀坡道喷管的设计方法,其中总结了二维(2D)膨胀坡道喷管、横向膨胀坡道喷管和形状过渡的三维(3D)膨胀坡道喷管的设计方法发展;2)超燃冲压发动机喷管独特的流动现象,包括非均匀入流和化学非平衡流;3)内部流与外部自由流的耦合和相互作用。此外,从三个方面综述了TBCC排气系统的设计和流动研究:1)大航程变几何设计,包括二维和三维排气系统;2)过膨胀流分离机理及其低飞行马赫数控制;3)过欠排气系统从低速流道(LSF)到高速流道(HSF)的模式转换。通过以上的总结和分析,可以进一步明确吸气式高超声速推进系统排气系统的现状、瓶颈和发展趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review on the aerodynamic issues of the exhaust system for scramjet and turbine based combined cycle engine

A review of research progress in the design of the exhaust system for the scramjet and turbine based combined cycle (TBCC) engine is presented. Firstly, the technical challenges encountered in designing the exhaust system for a hypersonic propulsion system are highlighted and discussed, and the performance parameter definition as well as the theoretical thrust prediction for the exhaust system is introduced. The review of scramjet nozzle focuses on three aspects: 1) the design method of the single expansion ramp nozzle (SERN) for the integration of the airframe with the propulsion system, in which the design method developments of the two-dimensional (2D) SERN, SERN with lateral expansion and three-dimensional (3D) SERN with shape transition are all summarized; 2) the unique flow phenomena of the scramjet nozzle, including the nonuniform inflow and chemical nonequilibrium flow in SERN; 3) the coupling and interaction of the internal flow with the external freestream. Besides, the design and flow researches of the TBCC exhaust system is also reviewed for three parts: 1) variable geometry design for wide flight range, in which both a 2D and 3D exhaust system are described; 2) the overexpanded flow separation mechanism and its control at low flight Mach number; 3) mode transition from low-speed flowpath (LSF) to high-speed flowpath (HSF) for over-under exhaust system. Through the above summary and analysis, the current status, bottlenecks, and development trend of the exhaust system for an airbreathing hypersonic propulsion system can be further clarified.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Aerospace Sciences
Progress in Aerospace Sciences 工程技术-工程:宇航
CiteScore
20.20
自引率
3.10%
发文量
41
审稿时长
5 months
期刊介绍: "Progress in Aerospace Sciences" is a prestigious international review journal focusing on research in aerospace sciences and its applications in research organizations, industry, and universities. The journal aims to appeal to a wide range of readers and provide valuable information. The primary content of the journal consists of specially commissioned review articles. These articles serve to collate the latest advancements in the expansive field of aerospace sciences. Unlike other journals, there are no restrictions on the length of papers. Authors are encouraged to furnish specialist readers with a clear and concise summary of recent work, while also providing enough detail for general aerospace readers to stay updated on developments in fields beyond their own expertise.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信