Muhammad Chhattal , Andreas Rosenkranz , Sana Zaki , Kexin Ren , Abdul Ghaffar , Zhenbin Gong , Philipp G. Grützmacher
{"title":"揭示MXenes的摩擦学潜力目前的理解和未来的展望。","authors":"Muhammad Chhattal , Andreas Rosenkranz , Sana Zaki , Kexin Ren , Abdul Ghaffar , Zhenbin Gong , Philipp G. Grützmacher","doi":"10.1016/j.cis.2023.103021","DOIUrl":null,"url":null,"abstract":"<div><p>Reducing energy consumption and CO<sub>2</sub><span><span> emissions by improving the tribological performance<span><span> of mechanical systems relies on the development of new lubrication concepts. Two-dimensional (2D) materials have been the subject of extensive tribological research due to their unique physical and chemical properties. 2D </span>transition metal carbides, </span></span>nitrides<span><span>, and carbonitrides (MXenes), with their tuneable </span>chemistry<span><span> and structure, are a relatively new addition to the family of 2D materials. MXenes' good strength<span> and stiffness, easy-to-shear ability, capability to form wear-resistant tribofilms, and the possibility to control their surface chemistry make them appealing candidates to be explored for tribological purposes. This review provides a comprehensive overview of MXenes' tribology, covering their structure-property relationship, synthesis approaches, deposition methods to generate </span></span>MXene<span><span> coatings for tribological purposes, and their fundamental tribological mechanisms. Furthermore, detailed insights into studies exploring MXenes' tribological performance from the nano- to the macro-scale are presented with special emphasis on their use as self-lubricating solid lubricants, </span>lubricant additives, and reinforcement phases in composites.</span></span></span></span></p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"321 ","pages":"Article 103021"},"PeriodicalIF":15.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unveiling the tribological potential of MXenes-current understanding and future perspectives\",\"authors\":\"Muhammad Chhattal , Andreas Rosenkranz , Sana Zaki , Kexin Ren , Abdul Ghaffar , Zhenbin Gong , Philipp G. Grützmacher\",\"doi\":\"10.1016/j.cis.2023.103021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reducing energy consumption and CO<sub>2</sub><span><span> emissions by improving the tribological performance<span><span> of mechanical systems relies on the development of new lubrication concepts. Two-dimensional (2D) materials have been the subject of extensive tribological research due to their unique physical and chemical properties. 2D </span>transition metal carbides, </span></span>nitrides<span><span>, and carbonitrides (MXenes), with their tuneable </span>chemistry<span><span> and structure, are a relatively new addition to the family of 2D materials. MXenes' good strength<span> and stiffness, easy-to-shear ability, capability to form wear-resistant tribofilms, and the possibility to control their surface chemistry make them appealing candidates to be explored for tribological purposes. This review provides a comprehensive overview of MXenes' tribology, covering their structure-property relationship, synthesis approaches, deposition methods to generate </span></span>MXene<span><span> coatings for tribological purposes, and their fundamental tribological mechanisms. Furthermore, detailed insights into studies exploring MXenes' tribological performance from the nano- to the macro-scale are presented with special emphasis on their use as self-lubricating solid lubricants, </span>lubricant additives, and reinforcement phases in composites.</span></span></span></span></p></div>\",\"PeriodicalId\":239,\"journal\":{\"name\":\"Advances in Colloid and Interface Science\",\"volume\":\"321 \",\"pages\":\"Article 103021\"},\"PeriodicalIF\":15.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001868623001884\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868623001884","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Unveiling the tribological potential of MXenes-current understanding and future perspectives
Reducing energy consumption and CO2 emissions by improving the tribological performance of mechanical systems relies on the development of new lubrication concepts. Two-dimensional (2D) materials have been the subject of extensive tribological research due to their unique physical and chemical properties. 2D transition metal carbides, nitrides, and carbonitrides (MXenes), with their tuneable chemistry and structure, are a relatively new addition to the family of 2D materials. MXenes' good strength and stiffness, easy-to-shear ability, capability to form wear-resistant tribofilms, and the possibility to control their surface chemistry make them appealing candidates to be explored for tribological purposes. This review provides a comprehensive overview of MXenes' tribology, covering their structure-property relationship, synthesis approaches, deposition methods to generate MXene coatings for tribological purposes, and their fundamental tribological mechanisms. Furthermore, detailed insights into studies exploring MXenes' tribological performance from the nano- to the macro-scale are presented with special emphasis on their use as self-lubricating solid lubricants, lubricant additives, and reinforcement phases in composites.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.