[识别实验室自动化的透明对象]。

Markus Vincze, Jean-Baptiste Weibel, Stefan Thalhammer, Hrishikesh Gupta, Philipp Ausserlechner
{"title":"[识别实验室自动化的透明对象]。","authors":"Markus Vincze,&nbsp;Jean-Baptiste Weibel,&nbsp;Stefan Thalhammer,&nbsp;Hrishikesh Gupta,&nbsp;Philipp Ausserlechner","doi":"10.1007/s00502-023-01158-w","DOIUrl":null,"url":null,"abstract":"<p><p>While matte objects can be visually recognized well and grasped with robots, transparent objects pose new challenges. Modern color and depth cameras (RGB-D) do not deliver correct depth data but distorted images of the background. In this paper, we show which methods are suitable to detect transparent objects in color images only and to determine their pose. Using a robotic system, views of the targeted object are generated and annotated to learn methods and to obtain data for evaluation. We also show that by using an improved method for fitting the 3D pose, a significant improvement in the accuracy of pose estimation is achieved. Thus, false detections can be eliminated and for correct detections the accuracy of pose estimation is improved. This makes it possible to grasp transparent objects with a robot.</p>","PeriodicalId":93547,"journal":{"name":"Elektrotechnik und Informationstechnik : E & I","volume":"140 6","pages":"519-529"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584713/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Recognizing transparent objects for laboratory automation].\",\"authors\":\"Markus Vincze,&nbsp;Jean-Baptiste Weibel,&nbsp;Stefan Thalhammer,&nbsp;Hrishikesh Gupta,&nbsp;Philipp Ausserlechner\",\"doi\":\"10.1007/s00502-023-01158-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While matte objects can be visually recognized well and grasped with robots, transparent objects pose new challenges. Modern color and depth cameras (RGB-D) do not deliver correct depth data but distorted images of the background. In this paper, we show which methods are suitable to detect transparent objects in color images only and to determine their pose. Using a robotic system, views of the targeted object are generated and annotated to learn methods and to obtain data for evaluation. We also show that by using an improved method for fitting the 3D pose, a significant improvement in the accuracy of pose estimation is achieved. Thus, false detections can be eliminated and for correct detections the accuracy of pose estimation is improved. This makes it possible to grasp transparent objects with a robot.</p>\",\"PeriodicalId\":93547,\"journal\":{\"name\":\"Elektrotechnik und Informationstechnik : E & I\",\"volume\":\"140 6\",\"pages\":\"519-529\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584713/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektrotechnik und Informationstechnik : E & I\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00502-023-01158-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektrotechnik und Informationstechnik : E & I","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00502-023-01158-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然哑光物体可以很好地被机器人视觉识别和掌握,但透明物体带来了新的挑战。现代彩色和深度相机(RGB-D)不能提供正确的深度数据,而是提供失真的背景图像。在本文中,我们展示了哪些方法适用于仅在彩色图像中检测透明物体并确定其姿态。使用机器人系统,生成并注释目标对象的视图,以学习方法并获得用于评估的数据。我们还表明,通过使用一种改进的三维姿态拟合方法,可以显著提高姿态估计的准确性。因此,可以消除错误检测,并且对于正确检测,可以提高姿态估计的精度。这使得用机器人抓取透明物体成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

[Recognizing transparent objects for laboratory automation].

[Recognizing transparent objects for laboratory automation].

[Recognizing transparent objects for laboratory automation].

[Recognizing transparent objects for laboratory automation].

While matte objects can be visually recognized well and grasped with robots, transparent objects pose new challenges. Modern color and depth cameras (RGB-D) do not deliver correct depth data but distorted images of the background. In this paper, we show which methods are suitable to detect transparent objects in color images only and to determine their pose. Using a robotic system, views of the targeted object are generated and annotated to learn methods and to obtain data for evaluation. We also show that by using an improved method for fitting the 3D pose, a significant improvement in the accuracy of pose estimation is achieved. Thus, false detections can be eliminated and for correct detections the accuracy of pose estimation is improved. This makes it possible to grasp transparent objects with a robot.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信