从多站点随机试验中设计最优、数据驱动的策略。

IF 3.1 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Psychometrika Pub Date : 2023-12-01 Epub Date: 2023-10-24 DOI:10.1007/s11336-023-09937-2
Youmi Suk, Chan Park
{"title":"从多站点随机试验中设计最优、数据驱动的策略。","authors":"Youmi Suk, Chan Park","doi":"10.1007/s11336-023-09937-2","DOIUrl":null,"url":null,"abstract":"<p><p>Optimal treatment regimes (OTRs) have been widely employed in computer science and personalized medicine to provide data-driven, optimal recommendations to individuals. However, previous research on OTRs has primarily focused on settings that are independent and identically distributed, with little attention given to the unique characteristics of educational settings, where students are nested within schools and there are hierarchical dependencies. The goal of this study is to propose a framework for designing OTRs from multisite randomized trials, a commonly used experimental design in education and psychology to evaluate educational programs. We investigate modifications to popular OTR methods, specifically Q-learning and weighting methods, in order to improve their performance in multisite randomized trials. A total of 12 modifications, 6 for Q-learning and 6 for weighting, are proposed by utilizing different multilevel models, moderators, and augmentations. Simulation studies reveal that all Q-learning modifications improve performance in multisite randomized trials and the modifications that incorporate random treatment effects show the most promise in handling cluster-level moderators. Among weighting methods, the modification that incorporates cluster dummies into moderator variables and augmentation terms performs best across simulation conditions. The proposed modifications are demonstrated through an application to estimate an OTR of conditional cash transfer programs using a multisite randomized trial in Colombia to maximize educational attainment.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1171-1196"},"PeriodicalIF":3.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Optimal, Data-Driven Policies from Multisite Randomized Trials.\",\"authors\":\"Youmi Suk, Chan Park\",\"doi\":\"10.1007/s11336-023-09937-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optimal treatment regimes (OTRs) have been widely employed in computer science and personalized medicine to provide data-driven, optimal recommendations to individuals. However, previous research on OTRs has primarily focused on settings that are independent and identically distributed, with little attention given to the unique characteristics of educational settings, where students are nested within schools and there are hierarchical dependencies. The goal of this study is to propose a framework for designing OTRs from multisite randomized trials, a commonly used experimental design in education and psychology to evaluate educational programs. We investigate modifications to popular OTR methods, specifically Q-learning and weighting methods, in order to improve their performance in multisite randomized trials. A total of 12 modifications, 6 for Q-learning and 6 for weighting, are proposed by utilizing different multilevel models, moderators, and augmentations. Simulation studies reveal that all Q-learning modifications improve performance in multisite randomized trials and the modifications that incorporate random treatment effects show the most promise in handling cluster-level moderators. Among weighting methods, the modification that incorporates cluster dummies into moderator variables and augmentation terms performs best across simulation conditions. The proposed modifications are demonstrated through an application to estimate an OTR of conditional cash transfer programs using a multisite randomized trial in Colombia to maximize educational attainment.</p>\",\"PeriodicalId\":54534,\"journal\":{\"name\":\"Psychometrika\",\"volume\":\" \",\"pages\":\"1171-1196\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychometrika\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s11336-023-09937-2\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-023-09937-2","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

最佳治疗方案(OTR)已被广泛应用于计算机科学和个性化医学,为个人提供数据驱动的最佳建议。然而,以前对OTR的研究主要集中在独立和相同分布的环境上,很少关注教育环境的独特特征,即学生嵌套在学校中,存在等级依赖性。本研究的目的是从多站点随机试验中提出一个设计OTR的框架,这是教育和心理学中常用的评估教育项目的实验设计。我们研究了对流行的OTR方法的修改,特别是Q学习和加权方法,以提高它们在多站点随机试验中的性能。通过利用不同的多级模型、调节因子和增广,总共提出了12种修改,其中6种用于Q学习,6种用于加权。模拟研究表明,在多站点随机试验中,所有Q学习修改都能提高性能,而结合随机治疗效果的修改在处理集群级调节因子方面最有希望。在加权方法中,将聚类假人纳入调节变量和增强项的修改在模拟条件下表现最好。通过在哥伦比亚进行的多站点随机试验来估计有条件现金转移项目的OTR,以最大限度地提高教育程度,从而证明了拟议的修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Designing Optimal, Data-Driven Policies from Multisite Randomized Trials.

Designing Optimal, Data-Driven Policies from Multisite Randomized Trials.

Optimal treatment regimes (OTRs) have been widely employed in computer science and personalized medicine to provide data-driven, optimal recommendations to individuals. However, previous research on OTRs has primarily focused on settings that are independent and identically distributed, with little attention given to the unique characteristics of educational settings, where students are nested within schools and there are hierarchical dependencies. The goal of this study is to propose a framework for designing OTRs from multisite randomized trials, a commonly used experimental design in education and psychology to evaluate educational programs. We investigate modifications to popular OTR methods, specifically Q-learning and weighting methods, in order to improve their performance in multisite randomized trials. A total of 12 modifications, 6 for Q-learning and 6 for weighting, are proposed by utilizing different multilevel models, moderators, and augmentations. Simulation studies reveal that all Q-learning modifications improve performance in multisite randomized trials and the modifications that incorporate random treatment effects show the most promise in handling cluster-level moderators. Among weighting methods, the modification that incorporates cluster dummies into moderator variables and augmentation terms performs best across simulation conditions. The proposed modifications are demonstrated through an application to estimate an OTR of conditional cash transfer programs using a multisite randomized trial in Colombia to maximize educational attainment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信