{"title":"硅内预测的V-Agents毒性估计不足。","authors":"Georgios Pampalakis","doi":"10.3390/jox13040039","DOIUrl":null,"url":null,"abstract":"<p><p>V-agents are exceedingly toxic nerve agents. Recently, it was highlighted that V-agents constitute a diverse subclass of compounds with most of them not extensively studied. Although chemical weapons have been banned under the Chemical Weapons Convention (CWC), there is an increased concern for chemical terrorism. Thus, it is important to understand their properties and toxicities, especially since some of these agents are not included in the CWC list. Nonetheless, to achieve this goal, the testing of a huge number of compounds is needed. Alternatively, in silico toxicology offers a great advantage for the rapid assessment of toxic compounds. Here, various in silico tools (TEST, VEGA, pkCSM ProTox-II) were used to estimate the acute oral toxicity (LD50) of different V-agents and compare them with experimental values. These programs underestimated the toxicity of V-agents, and certain V-agents were estimated to be relatively non-toxic. TEST was also used to estimate the physical properties and found to provide good approximations for densities, surface tensions and vapor pressures but not for viscosities. Thus, attention should be paid when interpreting and estimating the toxicities of V-agents in silico, and it is necessary to conduct future detailed experiments to understand their properties and develop effective countermeasures.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"13 4","pages":"615-624"},"PeriodicalIF":6.8000,"publicationDate":"2023-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594428/pdf/","citationCount":"0","resultStr":"{\"title\":\"Underestimations in the In Silico-Predicted Toxicities of V-Agents.\",\"authors\":\"Georgios Pampalakis\",\"doi\":\"10.3390/jox13040039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>V-agents are exceedingly toxic nerve agents. Recently, it was highlighted that V-agents constitute a diverse subclass of compounds with most of them not extensively studied. Although chemical weapons have been banned under the Chemical Weapons Convention (CWC), there is an increased concern for chemical terrorism. Thus, it is important to understand their properties and toxicities, especially since some of these agents are not included in the CWC list. Nonetheless, to achieve this goal, the testing of a huge number of compounds is needed. Alternatively, in silico toxicology offers a great advantage for the rapid assessment of toxic compounds. Here, various in silico tools (TEST, VEGA, pkCSM ProTox-II) were used to estimate the acute oral toxicity (LD50) of different V-agents and compare them with experimental values. These programs underestimated the toxicity of V-agents, and certain V-agents were estimated to be relatively non-toxic. TEST was also used to estimate the physical properties and found to provide good approximations for densities, surface tensions and vapor pressures but not for viscosities. Thus, attention should be paid when interpreting and estimating the toxicities of V-agents in silico, and it is necessary to conduct future detailed experiments to understand their properties and develop effective countermeasures.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"13 4\",\"pages\":\"615-624\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2023-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594428/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox13040039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox13040039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Underestimations in the In Silico-Predicted Toxicities of V-Agents.
V-agents are exceedingly toxic nerve agents. Recently, it was highlighted that V-agents constitute a diverse subclass of compounds with most of them not extensively studied. Although chemical weapons have been banned under the Chemical Weapons Convention (CWC), there is an increased concern for chemical terrorism. Thus, it is important to understand their properties and toxicities, especially since some of these agents are not included in the CWC list. Nonetheless, to achieve this goal, the testing of a huge number of compounds is needed. Alternatively, in silico toxicology offers a great advantage for the rapid assessment of toxic compounds. Here, various in silico tools (TEST, VEGA, pkCSM ProTox-II) were used to estimate the acute oral toxicity (LD50) of different V-agents and compare them with experimental values. These programs underestimated the toxicity of V-agents, and certain V-agents were estimated to be relatively non-toxic. TEST was also used to estimate the physical properties and found to provide good approximations for densities, surface tensions and vapor pressures but not for viscosities. Thus, attention should be paid when interpreting and estimating the toxicities of V-agents in silico, and it is necessary to conduct future detailed experiments to understand their properties and develop effective countermeasures.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.