Hidetaka Hara, Jeremy B Foote, Christophe Hansen-Estruch, Mohamed H Bikhet, Huy Q Nguyen, Mariyam Javed, Max Oscherwitz, Dalis E Collins, David Ayares, Takayuki Yamamoto, Timothy W King, David K C Cooper
{"title":"新世界(松鼠)猴转基因猪皮移植物的体外和体内免疫评估。","authors":"Hidetaka Hara, Jeremy B Foote, Christophe Hansen-Estruch, Mohamed H Bikhet, Huy Q Nguyen, Mariyam Javed, Max Oscherwitz, Dalis E Collins, David Ayares, Takayuki Yamamoto, Timothy W King, David K C Cooper","doi":"10.1111/xen.12832","DOIUrl":null,"url":null,"abstract":"<p><p>Half a million patients in the USA alone require treatment for burns annually. Following an extensive burn, it may not be possible to provide sufficient autografts in a single setting. Genetic manipulations (GM) of pigs offer the possibility of reducing primate humoral and cellular rejection of pig skin xenografts and thus extending graft survival. We compared the survival of skin grafts from pigs with 9-GM with that of autografts and allografts in squirrel monkeys. Monitoring for rejection was by (1) macroscopic examination, (2) histopathological examination of skin biopsies, and (3) measurement of anti-monkey and anti-pig IgM and IgG antibodies. Autografts (n = 5) survived throughout the 28 days of follow-up without histopathological features of rejection. Median survival of allografts (n = 6) was 14 days and of pig xenografts (n = 12) 21 days. Allotransplantation was associated with an increase in anti-monkey IgM, but the anticipated subsequent rise in IgG had not yet occurred at the time of euthanasia. Pig grafts were associated with increases in anti-pig IgM and IgG. In all cases, histopathologic features of rejection were similar. 9-GM pig skin xenografts survive at least as long as monkey skin allografts (and trended to survive longer), suggesting that they are a realistic clinical option for the temporary treatment of burns. Although monkeys with pig skin grafts developed anti-pig IgM and IgG antibodies, these did not cross-react with monkey antigens, indicating that a primary 9-GM pig skin graft would not be detrimental to a subsequent monkey skin allograft.</p>","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":" ","pages":"e12832"},"PeriodicalIF":3.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10843142/pdf/","citationCount":"0","resultStr":"{\"title\":\"In vitro and in vivo immune assessments of genetically-engineered pig skin grafts in New World (squirrel) monkeys.\",\"authors\":\"Hidetaka Hara, Jeremy B Foote, Christophe Hansen-Estruch, Mohamed H Bikhet, Huy Q Nguyen, Mariyam Javed, Max Oscherwitz, Dalis E Collins, David Ayares, Takayuki Yamamoto, Timothy W King, David K C Cooper\",\"doi\":\"10.1111/xen.12832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Half a million patients in the USA alone require treatment for burns annually. Following an extensive burn, it may not be possible to provide sufficient autografts in a single setting. Genetic manipulations (GM) of pigs offer the possibility of reducing primate humoral and cellular rejection of pig skin xenografts and thus extending graft survival. We compared the survival of skin grafts from pigs with 9-GM with that of autografts and allografts in squirrel monkeys. Monitoring for rejection was by (1) macroscopic examination, (2) histopathological examination of skin biopsies, and (3) measurement of anti-monkey and anti-pig IgM and IgG antibodies. Autografts (n = 5) survived throughout the 28 days of follow-up without histopathological features of rejection. Median survival of allografts (n = 6) was 14 days and of pig xenografts (n = 12) 21 days. Allotransplantation was associated with an increase in anti-monkey IgM, but the anticipated subsequent rise in IgG had not yet occurred at the time of euthanasia. Pig grafts were associated with increases in anti-pig IgM and IgG. In all cases, histopathologic features of rejection were similar. 9-GM pig skin xenografts survive at least as long as monkey skin allografts (and trended to survive longer), suggesting that they are a realistic clinical option for the temporary treatment of burns. Although monkeys with pig skin grafts developed anti-pig IgM and IgG antibodies, these did not cross-react with monkey antigens, indicating that a primary 9-GM pig skin graft would not be detrimental to a subsequent monkey skin allograft.</p>\",\"PeriodicalId\":23866,\"journal\":{\"name\":\"Xenotransplantation\",\"volume\":\" \",\"pages\":\"e12832\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10843142/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Xenotransplantation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/xen.12832\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenotransplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/xen.12832","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
In vitro and in vivo immune assessments of genetically-engineered pig skin grafts in New World (squirrel) monkeys.
Half a million patients in the USA alone require treatment for burns annually. Following an extensive burn, it may not be possible to provide sufficient autografts in a single setting. Genetic manipulations (GM) of pigs offer the possibility of reducing primate humoral and cellular rejection of pig skin xenografts and thus extending graft survival. We compared the survival of skin grafts from pigs with 9-GM with that of autografts and allografts in squirrel monkeys. Monitoring for rejection was by (1) macroscopic examination, (2) histopathological examination of skin biopsies, and (3) measurement of anti-monkey and anti-pig IgM and IgG antibodies. Autografts (n = 5) survived throughout the 28 days of follow-up without histopathological features of rejection. Median survival of allografts (n = 6) was 14 days and of pig xenografts (n = 12) 21 days. Allotransplantation was associated with an increase in anti-monkey IgM, but the anticipated subsequent rise in IgG had not yet occurred at the time of euthanasia. Pig grafts were associated with increases in anti-pig IgM and IgG. In all cases, histopathologic features of rejection were similar. 9-GM pig skin xenografts survive at least as long as monkey skin allografts (and trended to survive longer), suggesting that they are a realistic clinical option for the temporary treatment of burns. Although monkeys with pig skin grafts developed anti-pig IgM and IgG antibodies, these did not cross-react with monkey antigens, indicating that a primary 9-GM pig skin graft would not be detrimental to a subsequent monkey skin allograft.
期刊介绍:
Xenotransplantation provides its readership with rapid communication of new findings in the field of organ and tissue transplantation across species barriers.The journal is not only of interest to those whose primary area is xenotransplantation, but also to veterinarians, microbiologists and geneticists. It also investigates and reports on the controversial theological, ethical, legal and psychological implications of xenotransplantation.