身体姿势对健康人呼吸肌肉力量和咳嗽的影响。

IF 1.9 4区 医学 Q3 PHYSIOLOGY
Rui Yu , Tatsuma Okazaki , Yuzhuo Ren , Junko Okuyama , Satoru Ebihara , Shin-Ichi Izumi
{"title":"身体姿势对健康人呼吸肌肉力量和咳嗽的影响。","authors":"Rui Yu ,&nbsp;Tatsuma Okazaki ,&nbsp;Yuzhuo Ren ,&nbsp;Junko Okuyama ,&nbsp;Satoru Ebihara ,&nbsp;Shin-Ichi Izumi","doi":"10.1016/j.resp.2023.104181","DOIUrl":null,"url":null,"abstract":"<div><p>The respiratory muscle<span><span> force determines the intensity of cough force. A greater cough force for cleaning the airways is essential for preventing and managing pneumonia. Body posture can affect the onset of aspiration pneumonia<span>. However, the effects of body posture on the respiratory muscle and cough forces remain unclear. Thus, we aimed to explore the influence of the four body postures on respiratory muscle force, cough pressure, subjective ease of coughing, and pulmonary function<span> in healthy individuals. Twenty healthy individuals were included in this study. Body postures were 0-degree supine, 30- and 60-degree semi-recumbent, and 90-degree sitting. The maximal inspiratory and expiratory pressures, maximal cough pressure, subjective ease of coughing, and pulmonary function, including peak expiratory flow, were evaluated. We set the measured values in the supine posture to 100% and showed the relative values. The 60-degree posture showed stronger inspiratory (125.1 ± 3.9%, mean ± standard error [SE]) and expiratory (116.4 ± 3.0%) muscle force, cough pressure, more subjective ease of coughing, and greater peak expiratory flow (113.4 ± 3.0%) than the supine posture. The sitting posture also showed greater inspiratory muscle force and peak expiratory flow than the supine posture. The correlation coefficient for the 60-degree posture showed that the </span></span></span>maximal inspiratory pressure was moderately correlated with the maximal expiratory pressure (r = 0.512), cough pressure (r = 0.495), and peak expiratory flow (r = 0.558). The above findings suggest the advantage of keeping a 60-degree posture and avoiding the supine posture to generate a greater cough force in the prevention and management of pneumonia.</span></p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of body postures on respiratory muscle force and coughing in healthy people\",\"authors\":\"Rui Yu ,&nbsp;Tatsuma Okazaki ,&nbsp;Yuzhuo Ren ,&nbsp;Junko Okuyama ,&nbsp;Satoru Ebihara ,&nbsp;Shin-Ichi Izumi\",\"doi\":\"10.1016/j.resp.2023.104181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The respiratory muscle<span><span> force determines the intensity of cough force. A greater cough force for cleaning the airways is essential for preventing and managing pneumonia. Body posture can affect the onset of aspiration pneumonia<span>. However, the effects of body posture on the respiratory muscle and cough forces remain unclear. Thus, we aimed to explore the influence of the four body postures on respiratory muscle force, cough pressure, subjective ease of coughing, and pulmonary function<span> in healthy individuals. Twenty healthy individuals were included in this study. Body postures were 0-degree supine, 30- and 60-degree semi-recumbent, and 90-degree sitting. The maximal inspiratory and expiratory pressures, maximal cough pressure, subjective ease of coughing, and pulmonary function, including peak expiratory flow, were evaluated. We set the measured values in the supine posture to 100% and showed the relative values. The 60-degree posture showed stronger inspiratory (125.1 ± 3.9%, mean ± standard error [SE]) and expiratory (116.4 ± 3.0%) muscle force, cough pressure, more subjective ease of coughing, and greater peak expiratory flow (113.4 ± 3.0%) than the supine posture. The sitting posture also showed greater inspiratory muscle force and peak expiratory flow than the supine posture. The correlation coefficient for the 60-degree posture showed that the </span></span></span>maximal inspiratory pressure was moderately correlated with the maximal expiratory pressure (r = 0.512), cough pressure (r = 0.495), and peak expiratory flow (r = 0.558). The above findings suggest the advantage of keeping a 60-degree posture and avoiding the supine posture to generate a greater cough force in the prevention and management of pneumonia.</span></p></div>\",\"PeriodicalId\":20961,\"journal\":{\"name\":\"Respiratory Physiology & Neurobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiratory Physiology & Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569904823001696\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569904823001696","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

呼吸肌的力量决定了咳嗽力量的强度。加强咳嗽力度清洁呼吸道对预防和管理肺炎至关重要。体位会影响吸入性肺炎的发作。然而,身体姿势对呼吸肌和咳嗽力的影响尚不清楚。因此,我们旨在探讨四种体位对健康人呼吸肌力、咳嗽压力、主观咳嗽缓解度和肺功能的影响。20名健康个体被纳入本研究。身体姿势为0度仰卧,30度和60度半卧,90度坐姿。评估最大吸气和呼气压力、最大咳嗽压力、主观咳嗽缓解度和肺功能,包括呼气峰流量。我们将仰卧姿势下的测量值设置为100%,并显示相对值。与仰卧姿势相比,60度姿势表现出更强的吸气(125.1±3.9%,平均值±标准误差[SE])和呼气(116.4±3.0%)肌力、咳嗽压力、更主观的咳嗽缓解度和更大的呼气峰值流量(113.4±3.0%])。坐姿也显示出比仰卧位更大的吸气肌肉力量和呼气峰值流量。60度姿势的相关系数显示最大吸气压力与最大呼气压力(r=0.512)、咳嗽压力(r=0.495)、呼吸压力(r=0.696)呈中等相关,和呼气峰流量(r=0.558)。上述发现表明,在预防和治疗肺炎时,保持60度姿势和避免仰卧姿势可以产生更大的咳嗽力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of body postures on respiratory muscle force and coughing in healthy people

The respiratory muscle force determines the intensity of cough force. A greater cough force for cleaning the airways is essential for preventing and managing pneumonia. Body posture can affect the onset of aspiration pneumonia. However, the effects of body posture on the respiratory muscle and cough forces remain unclear. Thus, we aimed to explore the influence of the four body postures on respiratory muscle force, cough pressure, subjective ease of coughing, and pulmonary function in healthy individuals. Twenty healthy individuals were included in this study. Body postures were 0-degree supine, 30- and 60-degree semi-recumbent, and 90-degree sitting. The maximal inspiratory and expiratory pressures, maximal cough pressure, subjective ease of coughing, and pulmonary function, including peak expiratory flow, were evaluated. We set the measured values in the supine posture to 100% and showed the relative values. The 60-degree posture showed stronger inspiratory (125.1 ± 3.9%, mean ± standard error [SE]) and expiratory (116.4 ± 3.0%) muscle force, cough pressure, more subjective ease of coughing, and greater peak expiratory flow (113.4 ± 3.0%) than the supine posture. The sitting posture also showed greater inspiratory muscle force and peak expiratory flow than the supine posture. The correlation coefficient for the 60-degree posture showed that the maximal inspiratory pressure was moderately correlated with the maximal expiratory pressure (r = 0.512), cough pressure (r = 0.495), and peak expiratory flow (r = 0.558). The above findings suggest the advantage of keeping a 60-degree posture and avoiding the supine posture to generate a greater cough force in the prevention and management of pneumonia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
8.70%
发文量
104
审稿时长
54 days
期刊介绍: Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense. Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as: -Mechanics of breathing- Gas exchange and acid-base balance- Respiration at rest and exercise- Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen- Embryonic and adult respiration- Comparative respiratory physiology. Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信