{"title":"合子前非整倍体部分逆转导致的合子后大脑嵌合体。","authors":"Changuk Chung, Xiaoxu Yang, Joseph G. Gleeson","doi":"10.1038/s41588-023-01552-2","DOIUrl":null,"url":null,"abstract":"Brain somatic mosaicism is linked to several neurological disorders and is thought to arise post-zygotically. A study suggests that pre-zygotic aneuploidy followed by post-zygotic partial reversion leads to a recurrent form of brain mosaicism-related epilepsy.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"55 11","pages":"1784-1785"},"PeriodicalIF":31.7000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post-zygotic brain mosaicism as a result of partial reversion of pre-zygotic aneuploidy\",\"authors\":\"Changuk Chung, Xiaoxu Yang, Joseph G. Gleeson\",\"doi\":\"10.1038/s41588-023-01552-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain somatic mosaicism is linked to several neurological disorders and is thought to arise post-zygotically. A study suggests that pre-zygotic aneuploidy followed by post-zygotic partial reversion leads to a recurrent form of brain mosaicism-related epilepsy.\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"55 11\",\"pages\":\"1784-1785\"},\"PeriodicalIF\":31.7000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41588-023-01552-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-023-01552-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Post-zygotic brain mosaicism as a result of partial reversion of pre-zygotic aneuploidy
Brain somatic mosaicism is linked to several neurological disorders and is thought to arise post-zygotically. A study suggests that pre-zygotic aneuploidy followed by post-zygotic partial reversion leads to a recurrent form of brain mosaicism-related epilepsy.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution