{"title":"高效液相色谱-紫外分光光度法测定人血浆中艾沃西替尼的含量。","authors":"Yoshito Gando, Takeo Yasu","doi":"10.1093/chromsci/bmad082","DOIUrl":null,"url":null,"abstract":"<p><p>Ivosidenib is used for the treatment of acute myeloid leukemia (AML) with isocitrate dehydrogenase 1 (IDH1) mutations. However, increased blood concentrations of ivosidenib are associated with a risk of a prolonged QT interval in patients with AML. Therapeutic drug monitoring in patients with AML with IDH1 mutation offers the potential to improve treatment efficacy while minimizing toxicity. In this study, we developed an efficient high-performance liquid chromatography-ultraviolet (HPLC-UV) method for the quantification of ivosidenib in plasma. Human plasma samples (50 μL) were processed by protein precipitation using acetonitrile, followed by chromatographic separation on a reversed-phase column with an isocratic mobile phase of 0.5% KH₂PO₄ (pH 4.5) and acetonitrile (45:55, v/v) at a flow rate of 1.0 mL/min, with ultraviolet detection at 245 nm. Calibration curves were linear over the range of 0.25-20 μg/mL with a coefficient of determination (r2) of 0.99999. Intra-day and inter-day precision were 1.20-8.04% and 0.69-4.20%, respectively. The assay accuracy was -2.00% to 1.93% and recovery was >91.2%. These findings support the effectiveness of the newly developed HPLC-UV method for the quantification of ivosidenib in human plasma. This simple and cost-effective method is expected to expand ivosidenib monitoring in laboratories lacking LC-MS/MS instruments.</p>","PeriodicalId":15430,"journal":{"name":"Journal of chromatographic science","volume":" ","pages":"580-584"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simple HPLC-UV Method for Ivosidenib Determination in Human Plasma.\",\"authors\":\"Yoshito Gando, Takeo Yasu\",\"doi\":\"10.1093/chromsci/bmad082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ivosidenib is used for the treatment of acute myeloid leukemia (AML) with isocitrate dehydrogenase 1 (IDH1) mutations. However, increased blood concentrations of ivosidenib are associated with a risk of a prolonged QT interval in patients with AML. Therapeutic drug monitoring in patients with AML with IDH1 mutation offers the potential to improve treatment efficacy while minimizing toxicity. In this study, we developed an efficient high-performance liquid chromatography-ultraviolet (HPLC-UV) method for the quantification of ivosidenib in plasma. Human plasma samples (50 μL) were processed by protein precipitation using acetonitrile, followed by chromatographic separation on a reversed-phase column with an isocratic mobile phase of 0.5% KH₂PO₄ (pH 4.5) and acetonitrile (45:55, v/v) at a flow rate of 1.0 mL/min, with ultraviolet detection at 245 nm. Calibration curves were linear over the range of 0.25-20 μg/mL with a coefficient of determination (r2) of 0.99999. Intra-day and inter-day precision were 1.20-8.04% and 0.69-4.20%, respectively. The assay accuracy was -2.00% to 1.93% and recovery was >91.2%. These findings support the effectiveness of the newly developed HPLC-UV method for the quantification of ivosidenib in human plasma. This simple and cost-effective method is expected to expand ivosidenib monitoring in laboratories lacking LC-MS/MS instruments.</p>\",\"PeriodicalId\":15430,\"journal\":{\"name\":\"Journal of chromatographic science\",\"volume\":\" \",\"pages\":\"580-584\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of chromatographic science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1093/chromsci/bmad082\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chromatographic science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chromsci/bmad082","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A Simple HPLC-UV Method for Ivosidenib Determination in Human Plasma.
Ivosidenib is used for the treatment of acute myeloid leukemia (AML) with isocitrate dehydrogenase 1 (IDH1) mutations. However, increased blood concentrations of ivosidenib are associated with a risk of a prolonged QT interval in patients with AML. Therapeutic drug monitoring in patients with AML with IDH1 mutation offers the potential to improve treatment efficacy while minimizing toxicity. In this study, we developed an efficient high-performance liquid chromatography-ultraviolet (HPLC-UV) method for the quantification of ivosidenib in plasma. Human plasma samples (50 μL) were processed by protein precipitation using acetonitrile, followed by chromatographic separation on a reversed-phase column with an isocratic mobile phase of 0.5% KH₂PO₄ (pH 4.5) and acetonitrile (45:55, v/v) at a flow rate of 1.0 mL/min, with ultraviolet detection at 245 nm. Calibration curves were linear over the range of 0.25-20 μg/mL with a coefficient of determination (r2) of 0.99999. Intra-day and inter-day precision were 1.20-8.04% and 0.69-4.20%, respectively. The assay accuracy was -2.00% to 1.93% and recovery was >91.2%. These findings support the effectiveness of the newly developed HPLC-UV method for the quantification of ivosidenib in human plasma. This simple and cost-effective method is expected to expand ivosidenib monitoring in laboratories lacking LC-MS/MS instruments.
期刊介绍:
The Journal of Chromatographic Science is devoted to the dissemination of information concerning all methods of chromatographic analysis. The standard manuscript is a description of recent original research that covers any or all phases of a specific separation problem, principle, or method. Manuscripts which have a high degree of novelty and fundamental significance to the field of separation science are particularly encouraged. It is expected the authors will clearly state in the Introduction how their method compares in some markedly new and improved way to previous published related methods. Analytical performance characteristics of new methods including sensitivity, tested limits of detection or quantification, accuracy, precision, and specificity should be provided. Manuscripts which describe a straightforward extension of a known analytical method or an application to a previously analyzed and/or uncomplicated sample matrix will not normally be reviewed favorably. Manuscripts in which mass spectrometry is the dominant analytical method and chromatography is of marked secondary importance may be declined.