Ung Hee Lee, Varun S. Shetty, Patrick W. Franks, Jie Tan, Georgios Evangelopoulos, Sehoon Ha, Elliott J. Rouse
{"title":"使用样本有效主动学习的脚踝外骨骼控制的用户偏好优化。","authors":"Ung Hee Lee, Varun S. Shetty, Patrick W. Franks, Jie Tan, Georgios Evangelopoulos, Sehoon Ha, Elliott J. Rouse","doi":"10.1126/scirobotics.adg3705","DOIUrl":null,"url":null,"abstract":"<div >One challenge to achieving widespread success of augmentative exoskeletons is accurately adjusting the controller to provide cooperative assistance with their wearer. Often, the controller parameters are “tuned” to optimize a physiological or biomechanical objective. However, these approaches are resource intensive, while typically only enabling optimization of a single objective. In reality, the exoskeleton user experience is likely derived from many factors, including comfort, fatigue, and stability, among others. This work introduces an approach to conveniently tune the four parameters of an exoskeleton controller to maximize user preference. Our overarching strategy is to leverage the wearer to internally balance the experiential factors of wearing the system. We used an evolutionary algorithm to recommend potential parameters, which were ranked by a neural network that was pretrained with previously collected user preference data. The controller parameters that had the highest preference ranking were provided to the exoskeleton, and the wearer responded with real-time feedback as a forced-choice comparison. Our approach was able to converge on controller parameters preferred by the wearer with an accuracy of 88% on average when compared with randomly generated parameters. User-preferred settings stabilized in 43 ± 7 queries. This work demonstrates that user preference can be leveraged to tune a partial-assist ankle exoskeleton in real time using a simple, intuitive interface, highlighting the potential for translating lower-limb wearable technologies into our daily lives.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"8 83","pages":""},"PeriodicalIF":26.1000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"User preference optimization for control of ankle exoskeletons using sample efficient active learning\",\"authors\":\"Ung Hee Lee, Varun S. Shetty, Patrick W. Franks, Jie Tan, Georgios Evangelopoulos, Sehoon Ha, Elliott J. Rouse\",\"doi\":\"10.1126/scirobotics.adg3705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >One challenge to achieving widespread success of augmentative exoskeletons is accurately adjusting the controller to provide cooperative assistance with their wearer. Often, the controller parameters are “tuned” to optimize a physiological or biomechanical objective. However, these approaches are resource intensive, while typically only enabling optimization of a single objective. In reality, the exoskeleton user experience is likely derived from many factors, including comfort, fatigue, and stability, among others. This work introduces an approach to conveniently tune the four parameters of an exoskeleton controller to maximize user preference. Our overarching strategy is to leverage the wearer to internally balance the experiential factors of wearing the system. We used an evolutionary algorithm to recommend potential parameters, which were ranked by a neural network that was pretrained with previously collected user preference data. The controller parameters that had the highest preference ranking were provided to the exoskeleton, and the wearer responded with real-time feedback as a forced-choice comparison. Our approach was able to converge on controller parameters preferred by the wearer with an accuracy of 88% on average when compared with randomly generated parameters. User-preferred settings stabilized in 43 ± 7 queries. This work demonstrates that user preference can be leveraged to tune a partial-assist ankle exoskeleton in real time using a simple, intuitive interface, highlighting the potential for translating lower-limb wearable technologies into our daily lives.</div>\",\"PeriodicalId\":56029,\"journal\":{\"name\":\"Science Robotics\",\"volume\":\"8 83\",\"pages\":\"\"},\"PeriodicalIF\":26.1000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scirobotics.adg3705\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.adg3705","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
User preference optimization for control of ankle exoskeletons using sample efficient active learning
One challenge to achieving widespread success of augmentative exoskeletons is accurately adjusting the controller to provide cooperative assistance with their wearer. Often, the controller parameters are “tuned” to optimize a physiological or biomechanical objective. However, these approaches are resource intensive, while typically only enabling optimization of a single objective. In reality, the exoskeleton user experience is likely derived from many factors, including comfort, fatigue, and stability, among others. This work introduces an approach to conveniently tune the four parameters of an exoskeleton controller to maximize user preference. Our overarching strategy is to leverage the wearer to internally balance the experiential factors of wearing the system. We used an evolutionary algorithm to recommend potential parameters, which were ranked by a neural network that was pretrained with previously collected user preference data. The controller parameters that had the highest preference ranking were provided to the exoskeleton, and the wearer responded with real-time feedback as a forced-choice comparison. Our approach was able to converge on controller parameters preferred by the wearer with an accuracy of 88% on average when compared with randomly generated parameters. User-preferred settings stabilized in 43 ± 7 queries. This work demonstrates that user preference can be leveraged to tune a partial-assist ankle exoskeleton in real time using a simple, intuitive interface, highlighting the potential for translating lower-limb wearable technologies into our daily lives.
期刊介绍:
Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals.
Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.