Elmira Pourreza, Naci B Yaradanakul, Berat C Cengiz, Aysu Duyan Camurdan, Murat Zinnuroglu, Senih Gurses
{"title":"幼儿站立学习过程中局部足底压力分布和前后轴压力中心的时空演变。","authors":"Elmira Pourreza, Naci B Yaradanakul, Berat C Cengiz, Aysu Duyan Camurdan, Murat Zinnuroglu, Senih Gurses","doi":"10.1115/1.4063820","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated quiet stance of newly standing toddlers every three months (trimesters) of their second year of life. Their anteroposterior center-of-pressure (CoPx) velocity and centroidal frequency (CFREQ: 2.36 ± 0.10 to 1.50 ± 0.11 Hz) decreased over time. Besides, mean pressures revealed a potential role-sharing of foot regions in learning and control aspects of standing, with hindfoot carrying the highest (23.89 ± 6.47 kPa) pressure while forefoot the lowest (10.26 ± 2.51 kPa). The highest CFREQ of pressure signal was at midfoot. Through regional CoPx, forefoot has manifested the highest CFREQ (2.10 ± 0.40 Hz) and 90% power frequency (90%PF), whereas hindfoot presented the lowest (CFREQ: 1.80 ± 0.33 Hz). CFREQ and 90%PF of pressure and regional CoPx significantly decreased throughout the trimesters.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal Evolution of Toddlers' Regional Foot Pressure Distribution and Center of Pressure at Antero-Posterior Axis During Learning of Standing.\",\"authors\":\"Elmira Pourreza, Naci B Yaradanakul, Berat C Cengiz, Aysu Duyan Camurdan, Murat Zinnuroglu, Senih Gurses\",\"doi\":\"10.1115/1.4063820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated quiet stance of newly standing toddlers every three months (trimesters) of their second year of life. Their anteroposterior center-of-pressure (CoPx) velocity and centroidal frequency (CFREQ: 2.36 ± 0.10 to 1.50 ± 0.11 Hz) decreased over time. Besides, mean pressures revealed a potential role-sharing of foot regions in learning and control aspects of standing, with hindfoot carrying the highest (23.89 ± 6.47 kPa) pressure while forefoot the lowest (10.26 ± 2.51 kPa). The highest CFREQ of pressure signal was at midfoot. Through regional CoPx, forefoot has manifested the highest CFREQ (2.10 ± 0.40 Hz) and 90% power frequency (90%PF), whereas hindfoot presented the lowest (CFREQ: 1.80 ± 0.33 Hz). CFREQ and 90%PF of pressure and regional CoPx significantly decreased throughout the trimesters.</p>\",\"PeriodicalId\":54871,\"journal\":{\"name\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063820\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063820","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Spatiotemporal Evolution of Toddlers' Regional Foot Pressure Distribution and Center of Pressure at Antero-Posterior Axis During Learning of Standing.
We investigated quiet stance of newly standing toddlers every three months (trimesters) of their second year of life. Their anteroposterior center-of-pressure (CoPx) velocity and centroidal frequency (CFREQ: 2.36 ± 0.10 to 1.50 ± 0.11 Hz) decreased over time. Besides, mean pressures revealed a potential role-sharing of foot regions in learning and control aspects of standing, with hindfoot carrying the highest (23.89 ± 6.47 kPa) pressure while forefoot the lowest (10.26 ± 2.51 kPa). The highest CFREQ of pressure signal was at midfoot. Through regional CoPx, forefoot has manifested the highest CFREQ (2.10 ± 0.40 Hz) and 90% power frequency (90%PF), whereas hindfoot presented the lowest (CFREQ: 1.80 ± 0.33 Hz). CFREQ and 90%PF of pressure and regional CoPx significantly decreased throughout the trimesters.
期刊介绍:
Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.