Guangye Zhang, Yucong Liu, Jinhong Wang, Nan Li, Pengjun Han, Yiming Chen, Weijian Xu, Changxia Liu
{"title":"裂解肺炎克雷伯菌的新型噬菌体BUCT_49532的特性和基因组分析。","authors":"Guangye Zhang, Yucong Liu, Jinhong Wang, Nan Li, Pengjun Han, Yiming Chen, Weijian Xu, Changxia Liu","doi":"10.1007/s11262-023-02033-8","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteriophages are a type of virus widely distributed in nature that demonstrates a remarkable aptitude for selectively recognizing and infecting bacteria. In particular, Klebsiella pneumoniae is acknowledged as a clinical pathogen responsible for nosocomial infections and frequently develops multidrug resistance. Considering the increasing prevalence of antibiotic-resistant bacteria, bacteriophages have emerged as a compelling alternative therapeutic approach. In this study, a novel phage named BUCT_49532 was isolated from sewage using K. pneumoniae K1119 as the host. Electron microscopy revealed that BUCT_49532 belongs to the Caudoviricetes class. Further analysis through whole genome sequencing demonstrated that BUCT_49532 is a Jedunavirus comprised of linear double-stranded DNA with a length of 49,532 bp. Comparative genomics analysis based on average nucleotide identity (ANI) values revealed that BUCT_49532 should be identified as a novel species. Characterized by a good safety profile, high environmental stability, and strong lytic performance, phage BUCT_49532 presents an interesting case for consideration. Although its host range is relatively narrow, its application potential can be expanded by utilizing phage cocktails, making it a promising candidate for biocontrol approaches.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"852-867"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization and genomic analysis of a novel bacteriophage BUCT_49532 lysing Klebsiella pneumoniae.\",\"authors\":\"Guangye Zhang, Yucong Liu, Jinhong Wang, Nan Li, Pengjun Han, Yiming Chen, Weijian Xu, Changxia Liu\",\"doi\":\"10.1007/s11262-023-02033-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacteriophages are a type of virus widely distributed in nature that demonstrates a remarkable aptitude for selectively recognizing and infecting bacteria. In particular, Klebsiella pneumoniae is acknowledged as a clinical pathogen responsible for nosocomial infections and frequently develops multidrug resistance. Considering the increasing prevalence of antibiotic-resistant bacteria, bacteriophages have emerged as a compelling alternative therapeutic approach. In this study, a novel phage named BUCT_49532 was isolated from sewage using K. pneumoniae K1119 as the host. Electron microscopy revealed that BUCT_49532 belongs to the Caudoviricetes class. Further analysis through whole genome sequencing demonstrated that BUCT_49532 is a Jedunavirus comprised of linear double-stranded DNA with a length of 49,532 bp. Comparative genomics analysis based on average nucleotide identity (ANI) values revealed that BUCT_49532 should be identified as a novel species. Characterized by a good safety profile, high environmental stability, and strong lytic performance, phage BUCT_49532 presents an interesting case for consideration. Although its host range is relatively narrow, its application potential can be expanded by utilizing phage cocktails, making it a promising candidate for biocontrol approaches.</p>\",\"PeriodicalId\":51212,\"journal\":{\"name\":\"Virus Genes\",\"volume\":\" \",\"pages\":\"852-867\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virus Genes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11262-023-02033-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-023-02033-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Characterization and genomic analysis of a novel bacteriophage BUCT_49532 lysing Klebsiella pneumoniae.
Bacteriophages are a type of virus widely distributed in nature that demonstrates a remarkable aptitude for selectively recognizing and infecting bacteria. In particular, Klebsiella pneumoniae is acknowledged as a clinical pathogen responsible for nosocomial infections and frequently develops multidrug resistance. Considering the increasing prevalence of antibiotic-resistant bacteria, bacteriophages have emerged as a compelling alternative therapeutic approach. In this study, a novel phage named BUCT_49532 was isolated from sewage using K. pneumoniae K1119 as the host. Electron microscopy revealed that BUCT_49532 belongs to the Caudoviricetes class. Further analysis through whole genome sequencing demonstrated that BUCT_49532 is a Jedunavirus comprised of linear double-stranded DNA with a length of 49,532 bp. Comparative genomics analysis based on average nucleotide identity (ANI) values revealed that BUCT_49532 should be identified as a novel species. Characterized by a good safety profile, high environmental stability, and strong lytic performance, phage BUCT_49532 presents an interesting case for consideration. Although its host range is relatively narrow, its application potential can be expanded by utilizing phage cocktails, making it a promising candidate for biocontrol approaches.
期刊介绍:
Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools.
Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments.
Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.