预测阴离子导电膜聚合物材料的阴离子电导率和碱性稳定性:可解释的机器学习模型的开发。

IF 7.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Science and Technology of Advanced Materials Pub Date : 2023-10-16 eCollection Date: 2023-01-01 DOI:10.1080/14686996.2023.2261833
Yin Kan Phua, Tsuyohiko Fujigaya, Koichiro Kato
{"title":"预测阴离子导电膜聚合物材料的阴离子电导率和碱性稳定性:可解释的机器学习模型的开发。","authors":"Yin Kan Phua,&nbsp;Tsuyohiko Fujigaya,&nbsp;Koichiro Kato","doi":"10.1080/14686996.2023.2261833","DOIUrl":null,"url":null,"abstract":"<p><p>Anion exchange membranes (AEMs) are core components in fuel cells and water electrolyzers, which are crucial to realize a sustainable hydrogen society. The low anion conductivity and durability of AEMs have hindered the commercialization of AEM-based devices, and research and development (R&D) to improve AEM materials is often resource-intensive. Although machine learning (ML) is commonly used in many fields to accelerate R&D while reducing resource consumption, it is rarely used in the AEM field. Three problems hinder the adoption of ML models, namely, the low explainability of ML models; complication with expressing both homopolymers and copolymers in unity to train a single ML model; and difficulty in building a single ML model that comprehends various polymer types. This study presents the first ML models that solve all three problems. Our models predicted the anion conductivity for a diverse set of unseen AEM materials with high accuracy (root mean squared error = 0.014 S cm<sup>-1</sup>), regardless of their state (freshly synthesized or degraded). This enables virtual pre-synthesis screening of novel AEM materials, reducing resource consumption. Moreover, human-comprehensible prediction logic revealed new factors affecting the anion conductivity of AEM materials. Such capability to reveal new important variables for AEM materials design could shift the paradigm of AEM R&D. This proposed method is not limited to AEM materials, instead it presents a technology that is applicable to the diverse set of polymers currently available.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"24 1","pages":"2261833"},"PeriodicalIF":7.4000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/08/7b/TSTA_24_2261833.PMC10580864.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting the anion conductivities and alkaline stabilities of anion conducting membrane polymeric materials: development of explainable machine learning models.\",\"authors\":\"Yin Kan Phua,&nbsp;Tsuyohiko Fujigaya,&nbsp;Koichiro Kato\",\"doi\":\"10.1080/14686996.2023.2261833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anion exchange membranes (AEMs) are core components in fuel cells and water electrolyzers, which are crucial to realize a sustainable hydrogen society. The low anion conductivity and durability of AEMs have hindered the commercialization of AEM-based devices, and research and development (R&D) to improve AEM materials is often resource-intensive. Although machine learning (ML) is commonly used in many fields to accelerate R&D while reducing resource consumption, it is rarely used in the AEM field. Three problems hinder the adoption of ML models, namely, the low explainability of ML models; complication with expressing both homopolymers and copolymers in unity to train a single ML model; and difficulty in building a single ML model that comprehends various polymer types. This study presents the first ML models that solve all three problems. Our models predicted the anion conductivity for a diverse set of unseen AEM materials with high accuracy (root mean squared error = 0.014 S cm<sup>-1</sup>), regardless of their state (freshly synthesized or degraded). This enables virtual pre-synthesis screening of novel AEM materials, reducing resource consumption. Moreover, human-comprehensible prediction logic revealed new factors affecting the anion conductivity of AEM materials. Such capability to reveal new important variables for AEM materials design could shift the paradigm of AEM R&D. This proposed method is not limited to AEM materials, instead it presents a technology that is applicable to the diverse set of polymers currently available.</p>\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"24 1\",\"pages\":\"2261833\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/08/7b/TSTA_24_2261833.PMC10580864.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2023.2261833\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2023.2261833","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

阴离子交换膜是燃料电池和水电解槽的核心部件,对实现可持续的氢社会至关重要。AEM的低阴离子传导性和耐久性阻碍了基于AEM的设备的商业化,而改进AEM材料的研发(R&D)往往是资源密集型的。尽管机器学习(ML)在许多领域中普遍用于加速研发,同时减少资源消耗,但它很少用于AEM领域。三个问题阻碍了ML模型的采用,即ML模型的可解释性低;将均聚物和共聚物统一表达以训练单个ML模型的复杂性;以及难以建立理解各种聚合物类型的单个ML模型。本研究提出了第一个解决所有三个问题的ML模型。我们的模型以高精度(均方根误差 = 0.014 S cm-1),而不管它们的状态(新合成的或降解的)。这使得能够对新型AEM材料进行虚拟预合成筛选,从而减少资源消耗。此外,人类可理解的预测逻辑揭示了影响AEM材料阴离子电导率的新因素。这种为AEM材料设计揭示新的重要变量的能力可能会改变AEM研发的范式。这种提出的方法并不局限于AEM材料,相反,它提供了一种适用于目前可用的各种聚合物的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting the anion conductivities and alkaline stabilities of anion conducting membrane polymeric materials: development of explainable machine learning models.

Predicting the anion conductivities and alkaline stabilities of anion conducting membrane polymeric materials: development of explainable machine learning models.

Predicting the anion conductivities and alkaline stabilities of anion conducting membrane polymeric materials: development of explainable machine learning models.

Predicting the anion conductivities and alkaline stabilities of anion conducting membrane polymeric materials: development of explainable machine learning models.

Anion exchange membranes (AEMs) are core components in fuel cells and water electrolyzers, which are crucial to realize a sustainable hydrogen society. The low anion conductivity and durability of AEMs have hindered the commercialization of AEM-based devices, and research and development (R&D) to improve AEM materials is often resource-intensive. Although machine learning (ML) is commonly used in many fields to accelerate R&D while reducing resource consumption, it is rarely used in the AEM field. Three problems hinder the adoption of ML models, namely, the low explainability of ML models; complication with expressing both homopolymers and copolymers in unity to train a single ML model; and difficulty in building a single ML model that comprehends various polymer types. This study presents the first ML models that solve all three problems. Our models predicted the anion conductivity for a diverse set of unseen AEM materials with high accuracy (root mean squared error = 0.014 S cm-1), regardless of their state (freshly synthesized or degraded). This enables virtual pre-synthesis screening of novel AEM materials, reducing resource consumption. Moreover, human-comprehensible prediction logic revealed new factors affecting the anion conductivity of AEM materials. Such capability to reveal new important variables for AEM materials design could shift the paradigm of AEM R&D. This proposed method is not limited to AEM materials, instead it presents a technology that is applicable to the diverse set of polymers currently available.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Technology of Advanced Materials
Science and Technology of Advanced Materials 工程技术-材料科学:综合
CiteScore
10.60
自引率
3.60%
发文量
52
审稿时长
4.8 months
期刊介绍: Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering. The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications. Of particular interest are research papers on the following topics: Materials informatics and materials genomics Materials for 3D printing and additive manufacturing Nanostructured/nanoscale materials and nanodevices Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications Materials for energy and environment, next-generation photovoltaics, and green technologies Advanced structural materials, materials for extreme conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信