甾醇生物合成有助于Brefeldin-A诱导的莱茵衣藻内质网应激抗性。

IF 3.9 2区 生物学 Q2 CELL BIOLOGY
Sujeong Je, Bae Young Choi, Eunbi Kim, Kyungyoon Kim, Yuree Lee, Yasuyo Yamaoka
{"title":"甾醇生物合成有助于Brefeldin-A诱导的莱茵衣藻内质网应激抗性。","authors":"Sujeong Je, Bae Young Choi, Eunbi Kim, Kyungyoon Kim, Yuree Lee, Yasuyo Yamaoka","doi":"10.1093/pcp/pcad131","DOIUrl":null,"url":null,"abstract":"<p><p>The endoplasmic reticulum (ER) stress response is an evolutionarily conserved mechanism in most eukaryotes. In this response, sterols in the phospholipid bilayer play a crucial role in controlling membrane fluidity and homeostasis. Despite the significance of both the ER stress response and sterols in maintaining ER homeostasis, their relationship remains poorly explored. Our investigation focused on Chlamydomonas strain CC-4533 and revealed that free sterol biosynthesis increased in response to ER stress, except in mutants of the ER stress sensor Inositol-requiring enzyme 1 (IRE1). Transcript analysis of Chlamydomonas experiencing ER stress unveiled the regulatory role of the IRE1/basic leucine zipper 1 pathway in inducing the expression of ERG5, which encodes C-22 sterol desaturase. Through the isolation of three erg5 mutant alleles, we observed a defect in the synthesis of Chlamydomonas' sterol end products, ergosterol and 7-dehydroporiferasterol. Furthermore, these erg5 mutants also exhibited increased sensitivity to ER stress induced by brefeldin A (BFA, an inhibitor of ER-Golgi trafficking), whereas tunicamycin (an inhibitor of N-glycosylation) and dithiothreitol (an inhibitor of disulfide-bond formation) had no such effect. Intriguingly, the sterol biosynthesis inhibitors fenpropimorph and fenhexamid, which impede steps upstream of the ERG5 enzyme in sterol biosynthesis, rescued BFA hypersensitivity in CC-4533 cells. Collectively, our findings support the conclusion that the accumulation of intermediates in the sterol biosynthetic pathway influences ER stress in a complex manner. This study highlights the significance and complexity of regulating sterol biosynthesis during the ER stress response in microalgae.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sterol Biosynthesis Contributes to Brefeldin-A-Induced Endoplasmic Reticulum Stress Resistance in Chlamydomonas reinhardtii.\",\"authors\":\"Sujeong Je, Bae Young Choi, Eunbi Kim, Kyungyoon Kim, Yuree Lee, Yasuyo Yamaoka\",\"doi\":\"10.1093/pcp/pcad131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The endoplasmic reticulum (ER) stress response is an evolutionarily conserved mechanism in most eukaryotes. In this response, sterols in the phospholipid bilayer play a crucial role in controlling membrane fluidity and homeostasis. Despite the significance of both the ER stress response and sterols in maintaining ER homeostasis, their relationship remains poorly explored. Our investigation focused on Chlamydomonas strain CC-4533 and revealed that free sterol biosynthesis increased in response to ER stress, except in mutants of the ER stress sensor Inositol-requiring enzyme 1 (IRE1). Transcript analysis of Chlamydomonas experiencing ER stress unveiled the regulatory role of the IRE1/basic leucine zipper 1 pathway in inducing the expression of ERG5, which encodes C-22 sterol desaturase. Through the isolation of three erg5 mutant alleles, we observed a defect in the synthesis of Chlamydomonas' sterol end products, ergosterol and 7-dehydroporiferasterol. Furthermore, these erg5 mutants also exhibited increased sensitivity to ER stress induced by brefeldin A (BFA, an inhibitor of ER-Golgi trafficking), whereas tunicamycin (an inhibitor of N-glycosylation) and dithiothreitol (an inhibitor of disulfide-bond formation) had no such effect. Intriguingly, the sterol biosynthesis inhibitors fenpropimorph and fenhexamid, which impede steps upstream of the ERG5 enzyme in sterol biosynthesis, rescued BFA hypersensitivity in CC-4533 cells. Collectively, our findings support the conclusion that the accumulation of intermediates in the sterol biosynthetic pathway influences ER stress in a complex manner. This study highlights the significance and complexity of regulating sterol biosynthesis during the ER stress response in microalgae.</p>\",\"PeriodicalId\":20575,\"journal\":{\"name\":\"Plant and Cell Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Cell Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/pcp/pcad131\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Cell Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/pcp/pcad131","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

内质网应激反应是大多数真核生物进化中保守的机制。在这种反应中,磷脂双层中的甾醇在控制膜流动性和稳态方面发挥着至关重要的作用。尽管内质网应激反应和固醇在维持内质网稳态方面具有重要意义,但它们之间的关系仍有待深入研究。我们的研究集中在衣藻CC-4533菌株上,并揭示了游离甾醇的生物合成在对内质网应激的反应中增加,但在内质网应激传感器IRE1的突变体中除外。对经历ER应激的衣藻的转录分析揭示了IRE1/bZIP1通路在诱导ERG5表达中的调节作用,ERG5编码C-22甾醇去饱和酶。通过分离三个erg5突变等位基因,我们观察到衣藻甾醇终产物麦角甾醇和7-脱氢poriferasterol的合成存在缺陷。此外,这些erg5突变体对布雷菲尔丁A(BFA,ER高尔基体运输的抑制剂)诱导的ER应激也表现出更高的敏感性,而膜霉素(Tm,N-糖基化的抑制剂)和二硫苏糖醇(DTT,二硫键形成的抑制剂)没有这种作用。有趣的是,固醇生物合成抑制剂芬propimorph(Fp)和fenhexamid(Fh)阻碍了ERG5酶在固醇生物合成中的上游步骤,拯救了CC-4533细胞中的BFA超敏反应。总之,我们的发现支持了这样一个结论,即甾醇生物合成途径中中间体的积累以复杂的方式影响内质网应激。本研究强调了在微藻内质网应激反应过程中调节甾醇生物合成的重要性和复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sterol Biosynthesis Contributes to Brefeldin-A-Induced Endoplasmic Reticulum Stress Resistance in Chlamydomonas reinhardtii.

The endoplasmic reticulum (ER) stress response is an evolutionarily conserved mechanism in most eukaryotes. In this response, sterols in the phospholipid bilayer play a crucial role in controlling membrane fluidity and homeostasis. Despite the significance of both the ER stress response and sterols in maintaining ER homeostasis, their relationship remains poorly explored. Our investigation focused on Chlamydomonas strain CC-4533 and revealed that free sterol biosynthesis increased in response to ER stress, except in mutants of the ER stress sensor Inositol-requiring enzyme 1 (IRE1). Transcript analysis of Chlamydomonas experiencing ER stress unveiled the regulatory role of the IRE1/basic leucine zipper 1 pathway in inducing the expression of ERG5, which encodes C-22 sterol desaturase. Through the isolation of three erg5 mutant alleles, we observed a defect in the synthesis of Chlamydomonas' sterol end products, ergosterol and 7-dehydroporiferasterol. Furthermore, these erg5 mutants also exhibited increased sensitivity to ER stress induced by brefeldin A (BFA, an inhibitor of ER-Golgi trafficking), whereas tunicamycin (an inhibitor of N-glycosylation) and dithiothreitol (an inhibitor of disulfide-bond formation) had no such effect. Intriguingly, the sterol biosynthesis inhibitors fenpropimorph and fenhexamid, which impede steps upstream of the ERG5 enzyme in sterol biosynthesis, rescued BFA hypersensitivity in CC-4533 cells. Collectively, our findings support the conclusion that the accumulation of intermediates in the sterol biosynthetic pathway influences ER stress in a complex manner. This study highlights the significance and complexity of regulating sterol biosynthesis during the ER stress response in microalgae.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant and Cell Physiology
Plant and Cell Physiology 生物-细胞生物学
CiteScore
8.40
自引率
4.10%
发文量
166
审稿时长
1.7 months
期刊介绍: Plant & Cell Physiology (PCP) was established in 1959 and is the official journal of the Japanese Society of Plant Physiologists (JSPP). The title reflects the journal''s original interest and scope to encompass research not just at the whole-organism level but also at the cellular and subcellular levels. Amongst the broad range of topics covered by this international journal, readers will find the very best original research on plant physiology, biochemistry, cell biology, molecular genetics, epigenetics, biotechnology, bioinformatics and –omics; as well as how plants respond to and interact with their environment (abiotic and biotic factors), and the biology of photosynthetic microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信