Panpan Qiao, Luo Yu, Hongying Liu, Xueping Yan, Xitian Pi
{"title":"一种基于颜色识别的智能肠出血诊治胶囊系统","authors":"Panpan Qiao, Luo Yu, Hongying Liu, Xueping Yan, Xitian Pi","doi":"10.1007/s10544-022-00642-y","DOIUrl":null,"url":null,"abstract":"<div><p>To our best knowledge, there are no non-invasive and painless means for the diagnosis and treatment of intestinal bleeding as of now, especially the segment of intestine that cannot be reached by endoscopy. We proposed an intelligent intestinal bleeding diagnosis and treatment capsule (IBDTC) system for the first time to diagnose and treat intestinal bleeding with low power consumption, estimated to be about 2.16mW. A hue-saturation-light (HSL) color space method was applied to diagnose bleeding according to H (hue) values of the film dyed by blood. A MEMS-based micro-igniter works as the critical component of the micro-thruster that houses the propellant (74.6% potassium nitrate, 11.9% sulfur, 13.5% charcoal) and the detonating agent (dinitrodiazophenol), to help release drug. Bleeding detection and ignition tests were performed to justify its feasibility and reliability. Results demonstrated that the bleeding diagnosis module of the IBDTC can effectively detect bleeding and the micro-igniter can successfully ignite the propellant. Owing to its simplicity and intelligence, the IBDTC system will pave a way for future accurate treatment of small intestinal bleeding with no injury, no pain, no complicated supporting equipment, no need for <i>in vitro</i> operation and positioning.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"25 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-022-00642-y.pdf","citationCount":"0","resultStr":"{\"title\":\"An intelligent intestinal bleeding diagnosis and treatment capsule system based on color recognition\",\"authors\":\"Panpan Qiao, Luo Yu, Hongying Liu, Xueping Yan, Xitian Pi\",\"doi\":\"10.1007/s10544-022-00642-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To our best knowledge, there are no non-invasive and painless means for the diagnosis and treatment of intestinal bleeding as of now, especially the segment of intestine that cannot be reached by endoscopy. We proposed an intelligent intestinal bleeding diagnosis and treatment capsule (IBDTC) system for the first time to diagnose and treat intestinal bleeding with low power consumption, estimated to be about 2.16mW. A hue-saturation-light (HSL) color space method was applied to diagnose bleeding according to H (hue) values of the film dyed by blood. A MEMS-based micro-igniter works as the critical component of the micro-thruster that houses the propellant (74.6% potassium nitrate, 11.9% sulfur, 13.5% charcoal) and the detonating agent (dinitrodiazophenol), to help release drug. Bleeding detection and ignition tests were performed to justify its feasibility and reliability. Results demonstrated that the bleeding diagnosis module of the IBDTC can effectively detect bleeding and the micro-igniter can successfully ignite the propellant. Owing to its simplicity and intelligence, the IBDTC system will pave a way for future accurate treatment of small intestinal bleeding with no injury, no pain, no complicated supporting equipment, no need for <i>in vitro</i> operation and positioning.</p></div>\",\"PeriodicalId\":490,\"journal\":{\"name\":\"Biomedical Microdevices\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10544-022-00642-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Microdevices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10544-022-00642-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-022-00642-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
An intelligent intestinal bleeding diagnosis and treatment capsule system based on color recognition
To our best knowledge, there are no non-invasive and painless means for the diagnosis and treatment of intestinal bleeding as of now, especially the segment of intestine that cannot be reached by endoscopy. We proposed an intelligent intestinal bleeding diagnosis and treatment capsule (IBDTC) system for the first time to diagnose and treat intestinal bleeding with low power consumption, estimated to be about 2.16mW. A hue-saturation-light (HSL) color space method was applied to diagnose bleeding according to H (hue) values of the film dyed by blood. A MEMS-based micro-igniter works as the critical component of the micro-thruster that houses the propellant (74.6% potassium nitrate, 11.9% sulfur, 13.5% charcoal) and the detonating agent (dinitrodiazophenol), to help release drug. Bleeding detection and ignition tests were performed to justify its feasibility and reliability. Results demonstrated that the bleeding diagnosis module of the IBDTC can effectively detect bleeding and the micro-igniter can successfully ignite the propellant. Owing to its simplicity and intelligence, the IBDTC system will pave a way for future accurate treatment of small intestinal bleeding with no injury, no pain, no complicated supporting equipment, no need for in vitro operation and positioning.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.