一种基于颜色识别的智能肠出血诊治胶囊系统

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Panpan Qiao, Luo Yu, Hongying Liu, Xueping Yan, Xitian Pi
{"title":"一种基于颜色识别的智能肠出血诊治胶囊系统","authors":"Panpan Qiao,&nbsp;Luo Yu,&nbsp;Hongying Liu,&nbsp;Xueping Yan,&nbsp;Xitian Pi","doi":"10.1007/s10544-022-00642-y","DOIUrl":null,"url":null,"abstract":"<div><p>To our best knowledge, there are no non-invasive and painless means for the diagnosis and treatment of intestinal bleeding as of now, especially the segment of intestine that cannot be reached by endoscopy. We proposed an intelligent intestinal bleeding diagnosis and treatment capsule (IBDTC) system for the first time to diagnose and treat intestinal bleeding with low power consumption, estimated to be about 2.16mW. A hue-saturation-light (HSL) color space method was applied to diagnose bleeding according to H (hue) values of the film dyed by blood. A MEMS-based micro-igniter works as the critical component of the micro-thruster that houses the propellant (74.6% potassium nitrate, 11.9% sulfur, 13.5% charcoal) and the detonating agent (dinitrodiazophenol), to help release drug. Bleeding detection and ignition tests were performed to justify its feasibility and reliability. Results demonstrated that the bleeding diagnosis module of the IBDTC can effectively detect bleeding and the micro-igniter can successfully ignite the propellant. Owing to its simplicity and intelligence, the IBDTC system will pave a way for future accurate treatment of small intestinal bleeding with no injury, no pain, no complicated supporting equipment, no need for <i>in vitro</i> operation and positioning.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"25 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-022-00642-y.pdf","citationCount":"0","resultStr":"{\"title\":\"An intelligent intestinal bleeding diagnosis and treatment capsule system based on color recognition\",\"authors\":\"Panpan Qiao,&nbsp;Luo Yu,&nbsp;Hongying Liu,&nbsp;Xueping Yan,&nbsp;Xitian Pi\",\"doi\":\"10.1007/s10544-022-00642-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To our best knowledge, there are no non-invasive and painless means for the diagnosis and treatment of intestinal bleeding as of now, especially the segment of intestine that cannot be reached by endoscopy. We proposed an intelligent intestinal bleeding diagnosis and treatment capsule (IBDTC) system for the first time to diagnose and treat intestinal bleeding with low power consumption, estimated to be about 2.16mW. A hue-saturation-light (HSL) color space method was applied to diagnose bleeding according to H (hue) values of the film dyed by blood. A MEMS-based micro-igniter works as the critical component of the micro-thruster that houses the propellant (74.6% potassium nitrate, 11.9% sulfur, 13.5% charcoal) and the detonating agent (dinitrodiazophenol), to help release drug. Bleeding detection and ignition tests were performed to justify its feasibility and reliability. Results demonstrated that the bleeding diagnosis module of the IBDTC can effectively detect bleeding and the micro-igniter can successfully ignite the propellant. Owing to its simplicity and intelligence, the IBDTC system will pave a way for future accurate treatment of small intestinal bleeding with no injury, no pain, no complicated supporting equipment, no need for <i>in vitro</i> operation and positioning.</p></div>\",\"PeriodicalId\":490,\"journal\":{\"name\":\"Biomedical Microdevices\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10544-022-00642-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Microdevices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10544-022-00642-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-022-00642-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

据我们所知,目前还没有无创无痛的方法来诊断和治疗肠道出血,特别是内镜无法到达的肠道部分。首次提出肠道出血智能诊疗胶囊(IBDTC)系统,实现肠道出血的低功耗诊断和治疗,估计功耗约2.16mW。根据血染膜的色相H值,应用色相饱和光(HSL)色空间法诊断出血。基于mems的微型点火器是微型推进器的关键部件,它容纳推进剂(74.6%硝酸钾,11.9%硫,13.5%木炭)和起爆剂(二硝基重氮酚),以帮助释放药物。通过出血检测和点火试验验证了该方法的可行性和可靠性。结果表明,IBDTC的出血诊断模块能够有效地检测出出血,微点火器能够成功地点燃推进剂。IBDTC系统简单、智能,无损伤、无疼痛,无需复杂的辅助设备,无需体外操作和定位,为未来小肠出血的精准治疗铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An intelligent intestinal bleeding diagnosis and treatment capsule system based on color recognition

An intelligent intestinal bleeding diagnosis and treatment capsule system based on color recognition

To our best knowledge, there are no non-invasive and painless means for the diagnosis and treatment of intestinal bleeding as of now, especially the segment of intestine that cannot be reached by endoscopy. We proposed an intelligent intestinal bleeding diagnosis and treatment capsule (IBDTC) system for the first time to diagnose and treat intestinal bleeding with low power consumption, estimated to be about 2.16mW. A hue-saturation-light (HSL) color space method was applied to diagnose bleeding according to H (hue) values of the film dyed by blood. A MEMS-based micro-igniter works as the critical component of the micro-thruster that houses the propellant (74.6% potassium nitrate, 11.9% sulfur, 13.5% charcoal) and the detonating agent (dinitrodiazophenol), to help release drug. Bleeding detection and ignition tests were performed to justify its feasibility and reliability. Results demonstrated that the bleeding diagnosis module of the IBDTC can effectively detect bleeding and the micro-igniter can successfully ignite the propellant. Owing to its simplicity and intelligence, the IBDTC system will pave a way for future accurate treatment of small intestinal bleeding with no injury, no pain, no complicated supporting equipment, no need for in vitro operation and positioning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信