用于评估陶瓷复合材料连接性的多尺度孔隙网络建模。

IF 2.5 3区 工程技术 Q1 MICROSCOPY
Joan Widin Schroeder, Matthew J. Burch, Mario A. Perez
{"title":"用于评估陶瓷复合材料连接性的多尺度孔隙网络建模。","authors":"Joan Widin Schroeder,&nbsp;Matthew J. Burch,&nbsp;Mario A. Perez","doi":"10.1016/j.micron.2023.103556","DOIUrl":null,"url":null,"abstract":"<div><p>Complex morphologies, such as open or connected feature networks, are present in a wide variety of materials. Characteristics of these networks can impact key performance attributes of the materials themselves, affecting transport properties such as thermal conductivity. Therefore, it is critical to analyze the microstructure of these materials to gain a better understanding of the fundamental characteristics of the morphology. This study utilized pore network modeling as a method to extract morphological information on the solid network formed by boron nitride ceramic flakes in a polymeric resin matrix and uses the characteristics of the model to analyze the connectivity of the flakes. In this work, Micro-CT and FIB/SEM tomography were used in tandem to provide complimentary analyses of the microstructure and nanostructure, respectively, of the flake network to understand how this may contribute to transport properties of the material. Rather than a pore network model (PNM), the flake network model (FNM) was extracted from the tomographic datasets and the coordination number distribution was determined for the flakes detected in each. Micro-CT analysis showed that the flakes had formed a cage-like network around the exterior of the sample with limited connectivity in the interior, likely due to flake agglomeration at the outer surface of the material. A comparison of the full and interior-only Micro-CT FNMs indicated lower connectivity in the interior. This was confirmed by flow rate models generated from the network analysis for the flake contact points. The FNM extracted from the FIB/SEM tomography dataset exhibited similar connectivity compared to the interior-only FNM, indicating that the connectivity of the material was consistent when measured at the micron scale and at the nanometer scale.</p></div>","PeriodicalId":18501,"journal":{"name":"Micron","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale pore network modelling to evaluate connectivity in ceramic composites\",\"authors\":\"Joan Widin Schroeder,&nbsp;Matthew J. Burch,&nbsp;Mario A. Perez\",\"doi\":\"10.1016/j.micron.2023.103556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Complex morphologies, such as open or connected feature networks, are present in a wide variety of materials. Characteristics of these networks can impact key performance attributes of the materials themselves, affecting transport properties such as thermal conductivity. Therefore, it is critical to analyze the microstructure of these materials to gain a better understanding of the fundamental characteristics of the morphology. This study utilized pore network modeling as a method to extract morphological information on the solid network formed by boron nitride ceramic flakes in a polymeric resin matrix and uses the characteristics of the model to analyze the connectivity of the flakes. In this work, Micro-CT and FIB/SEM tomography were used in tandem to provide complimentary analyses of the microstructure and nanostructure, respectively, of the flake network to understand how this may contribute to transport properties of the material. Rather than a pore network model (PNM), the flake network model (FNM) was extracted from the tomographic datasets and the coordination number distribution was determined for the flakes detected in each. Micro-CT analysis showed that the flakes had formed a cage-like network around the exterior of the sample with limited connectivity in the interior, likely due to flake agglomeration at the outer surface of the material. A comparison of the full and interior-only Micro-CT FNMs indicated lower connectivity in the interior. This was confirmed by flow rate models generated from the network analysis for the flake contact points. The FNM extracted from the FIB/SEM tomography dataset exhibited similar connectivity compared to the interior-only FNM, indicating that the connectivity of the material was consistent when measured at the micron scale and at the nanometer scale.</p></div>\",\"PeriodicalId\":18501,\"journal\":{\"name\":\"Micron\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micron\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968432823001543\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micron","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968432823001543","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

复杂的形态,如开放或连接的特征网络,存在于各种各样的材料中。这些网络的特性会影响材料本身的关键性能属性,影响热传导率等传输特性。因此,分析这些材料的微观结构以更好地了解其形态的基本特征至关重要。本研究利用孔隙网络建模作为一种方法来提取由氮化硼陶瓷薄片在聚合物树脂基体中形成的固体网络的形态信息,并利用该模型的特性来分析薄片的连接性。在这项工作中,Micro-CT和FIB/SEM断层扫描被串联使用,分别对薄片网络的微观结构和纳米结构进行补充分析,以了解这可能如何有助于材料的传输特性。从断层图像数据集中提取薄片网络模型(FNM),而不是孔隙网络模型(PNM),并确定每个薄片中检测到的薄片的配位数分布。显微CT分析表明,薄片在样品外部形成了笼状网络,内部连接有限,这可能是由于材料外表面的薄片团聚。全套和仅限内部的Micro-CT FNM的比较表明,内部的连通性较低。通过薄片接触点的网络分析生成的流速模型证实了这一点。与仅内部的FNM相比,从FIB/SEM断层扫描数据集中提取的FNM表现出相似的连接性,表明在微米级和纳米级测量时,材料的连接性是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-scale pore network modelling to evaluate connectivity in ceramic composites

Complex morphologies, such as open or connected feature networks, are present in a wide variety of materials. Characteristics of these networks can impact key performance attributes of the materials themselves, affecting transport properties such as thermal conductivity. Therefore, it is critical to analyze the microstructure of these materials to gain a better understanding of the fundamental characteristics of the morphology. This study utilized pore network modeling as a method to extract morphological information on the solid network formed by boron nitride ceramic flakes in a polymeric resin matrix and uses the characteristics of the model to analyze the connectivity of the flakes. In this work, Micro-CT and FIB/SEM tomography were used in tandem to provide complimentary analyses of the microstructure and nanostructure, respectively, of the flake network to understand how this may contribute to transport properties of the material. Rather than a pore network model (PNM), the flake network model (FNM) was extracted from the tomographic datasets and the coordination number distribution was determined for the flakes detected in each. Micro-CT analysis showed that the flakes had formed a cage-like network around the exterior of the sample with limited connectivity in the interior, likely due to flake agglomeration at the outer surface of the material. A comparison of the full and interior-only Micro-CT FNMs indicated lower connectivity in the interior. This was confirmed by flow rate models generated from the network analysis for the flake contact points. The FNM extracted from the FIB/SEM tomography dataset exhibited similar connectivity compared to the interior-only FNM, indicating that the connectivity of the material was consistent when measured at the micron scale and at the nanometer scale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micron
Micron 工程技术-显微镜技术
CiteScore
4.30
自引率
4.20%
发文量
100
审稿时长
31 days
期刊介绍: Micron is an interdisciplinary forum for all work that involves new applications of microscopy or where advanced microscopy plays a central role. The journal will publish on the design, methods, application, practice or theory of microscopy and microanalysis, including reports on optical, electron-beam, X-ray microtomography, and scanning-probe systems. It also aims at the regular publication of review papers, short communications, as well as thematic issues on contemporary developments in microscopy and microanalysis. The journal embraces original research in which microscopy has contributed significantly to knowledge in biology, life science, nanoscience and nanotechnology, materials science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信