Ahmet Akkoca, Belgin Büyükakıllı, Ebru Ballı, Burcu Gültekin, Erkan Özbay, Hatice Oruç Demirbağ, Çağatay Han Türkseven
{"title":"MitoTEMPO对缺血再灌注引起的心脏功能障碍的保护作用:MCAO卒中模型研究。","authors":"Ahmet Akkoca, Belgin Büyükakıllı, Ebru Ballı, Burcu Gültekin, Erkan Özbay, Hatice Oruç Demirbağ, Çağatay Han Türkseven","doi":"10.1080/00207454.2023.2273768","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Neurological impairments are the leading cause of post-stroke mortality, while stroke-related cardiovascular diseases rank second in significance. This study investigates the potential protective effects of MitoTEMPO (2,2,6,6-tetramethyl-4-[[2-(triphenylphosphonio) acetyl] amino]-1-piperidinyloxy, monochloride, monohydrate), a mitochondria-specific antioxidant, against cardiac and neurological complications following stroke. The objective is to assess whether MitoTEMPO can be utilized as a protective agent for individuals with a high risk of stroke.</p><p><strong>Materials and methods: </strong>Seventeen-week-old male Wistar Albino rats were randomly assigned to three groups: SHAM, ischemia-reperfusion and MitoTEMPO + ischemia-reperfusion (MitoTEMPO injection 0.7 mg/kg/day for 14 days). The SHAM group underwent a sham operation, while the ischemia-reperfusion group underwent 1-h middle cerebral artery occlusion followed by three days of reperfusion. Afterwards, noninvasive thoracic electrical bioimpedance and electrocardiography measurements were taken, and sample collection was performed for histological and biochemical examinations.</p><p><strong>Results: </strong>Our thoracic electrical bioimpedance and electrocardiography findings demonstrated that MitoTEMPO exhibited a protective effect on most parameters affected by ischemia-reperfusion compared to the SHAM group. Furthermore, our biochemical and histological data revealed a significant protective effect of MitoTEMPO against oxidative damage.</p><p><strong>Conclusions: </strong>The findings suggest that both ischemia-reperfusion-induced cardiovascular abnormalities and the protective effect of MitoTEMPO may involve G-protein coupled receptor-mediated signaling mechanisms. This study was conducted with limitations including a single gender, a uniform age group, a specific stroke model limited to middle cerebral artery, and pre-scheduled only one ischemia-reperfusion period. In future studies, addressing these limitations may enable the implementation of preventive measures for individuals at high risk of stroke.</p>","PeriodicalId":14161,"journal":{"name":"International Journal of Neuroscience","volume":" ","pages":"1582-1593"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective effect of MitoTEMPO against cardiac dysfunction caused by ischemia-reperfusion: MCAO stroke model study.\",\"authors\":\"Ahmet Akkoca, Belgin Büyükakıllı, Ebru Ballı, Burcu Gültekin, Erkan Özbay, Hatice Oruç Demirbağ, Çağatay Han Türkseven\",\"doi\":\"10.1080/00207454.2023.2273768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Neurological impairments are the leading cause of post-stroke mortality, while stroke-related cardiovascular diseases rank second in significance. This study investigates the potential protective effects of MitoTEMPO (2,2,6,6-tetramethyl-4-[[2-(triphenylphosphonio) acetyl] amino]-1-piperidinyloxy, monochloride, monohydrate), a mitochondria-specific antioxidant, against cardiac and neurological complications following stroke. The objective is to assess whether MitoTEMPO can be utilized as a protective agent for individuals with a high risk of stroke.</p><p><strong>Materials and methods: </strong>Seventeen-week-old male Wistar Albino rats were randomly assigned to three groups: SHAM, ischemia-reperfusion and MitoTEMPO + ischemia-reperfusion (MitoTEMPO injection 0.7 mg/kg/day for 14 days). The SHAM group underwent a sham operation, while the ischemia-reperfusion group underwent 1-h middle cerebral artery occlusion followed by three days of reperfusion. Afterwards, noninvasive thoracic electrical bioimpedance and electrocardiography measurements were taken, and sample collection was performed for histological and biochemical examinations.</p><p><strong>Results: </strong>Our thoracic electrical bioimpedance and electrocardiography findings demonstrated that MitoTEMPO exhibited a protective effect on most parameters affected by ischemia-reperfusion compared to the SHAM group. Furthermore, our biochemical and histological data revealed a significant protective effect of MitoTEMPO against oxidative damage.</p><p><strong>Conclusions: </strong>The findings suggest that both ischemia-reperfusion-induced cardiovascular abnormalities and the protective effect of MitoTEMPO may involve G-protein coupled receptor-mediated signaling mechanisms. This study was conducted with limitations including a single gender, a uniform age group, a specific stroke model limited to middle cerebral artery, and pre-scheduled only one ischemia-reperfusion period. In future studies, addressing these limitations may enable the implementation of preventive measures for individuals at high risk of stroke.</p>\",\"PeriodicalId\":14161,\"journal\":{\"name\":\"International Journal of Neuroscience\",\"volume\":\" \",\"pages\":\"1582-1593\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/00207454.2023.2273768\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00207454.2023.2273768","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Protective effect of MitoTEMPO against cardiac dysfunction caused by ischemia-reperfusion: MCAO stroke model study.
Purpose: Neurological impairments are the leading cause of post-stroke mortality, while stroke-related cardiovascular diseases rank second in significance. This study investigates the potential protective effects of MitoTEMPO (2,2,6,6-tetramethyl-4-[[2-(triphenylphosphonio) acetyl] amino]-1-piperidinyloxy, monochloride, monohydrate), a mitochondria-specific antioxidant, against cardiac and neurological complications following stroke. The objective is to assess whether MitoTEMPO can be utilized as a protective agent for individuals with a high risk of stroke.
Materials and methods: Seventeen-week-old male Wistar Albino rats were randomly assigned to three groups: SHAM, ischemia-reperfusion and MitoTEMPO + ischemia-reperfusion (MitoTEMPO injection 0.7 mg/kg/day for 14 days). The SHAM group underwent a sham operation, while the ischemia-reperfusion group underwent 1-h middle cerebral artery occlusion followed by three days of reperfusion. Afterwards, noninvasive thoracic electrical bioimpedance and electrocardiography measurements were taken, and sample collection was performed for histological and biochemical examinations.
Results: Our thoracic electrical bioimpedance and electrocardiography findings demonstrated that MitoTEMPO exhibited a protective effect on most parameters affected by ischemia-reperfusion compared to the SHAM group. Furthermore, our biochemical and histological data revealed a significant protective effect of MitoTEMPO against oxidative damage.
Conclusions: The findings suggest that both ischemia-reperfusion-induced cardiovascular abnormalities and the protective effect of MitoTEMPO may involve G-protein coupled receptor-mediated signaling mechanisms. This study was conducted with limitations including a single gender, a uniform age group, a specific stroke model limited to middle cerebral artery, and pre-scheduled only one ischemia-reperfusion period. In future studies, addressing these limitations may enable the implementation of preventive measures for individuals at high risk of stroke.
期刊介绍:
The International Journal of Neuroscience publishes original research articles, reviews, brief scientific reports, case studies, letters to the editor and book reviews concerned with problems of the nervous system and related clinical studies, epidemiology, neuropathology, medical and surgical treatment options and outcomes, neuropsychology and other topics related to the research and care of persons with neurologic disorders. The focus of the journal is clinical and transitional research. Topics covered include but are not limited to: ALS, ataxia, autism, brain tumors, child neurology, demyelinating diseases, epilepsy, genetics, headache, lysosomal storage disease, mitochondrial dysfunction, movement disorders, multiple sclerosis, myopathy, neurodegenerative diseases, neuromuscular disorders, neuropharmacology, neuropsychiatry, neuropsychology, pain, sleep disorders, stroke, and other areas related to the neurosciences.