不同类型坐骨神经损伤后大鼠背根神经节组织的组织形态学和体视学评价。

IF 2.1 4区 生物学 Q4 CELL BIOLOGY
Histochemistry and Cell Biology Pub Date : 2024-02-01 Epub Date: 2023-10-19 DOI:10.1007/s00418-023-02242-0
Burcu Delibaş, Suleyman Kaplan
{"title":"不同类型坐骨神经损伤后大鼠背根神经节组织的组织形态学和体视学评价。","authors":"Burcu Delibaş, Suleyman Kaplan","doi":"10.1007/s00418-023-02242-0","DOIUrl":null,"url":null,"abstract":"<p><p>Peripheral nerve injuries lead to significant changes in the dorsal root ganglia, where the cell bodies of the damaged axons are located. The sensory neurons and the surrounding satellite cells rearrange the composition of the intracellular organelles to enhance their plasticity for adaptation to changing conditions and response to injury. Meanwhile, satellite cells acquire phagocytic properties and work with macrophages to eliminate degenerated neurons. These structural and functional changes are not identical in all injury types. Understanding the cellular response, which varies according to the type of injury involved, is essential in determining the optimal method of treatment. In this research, we investigated the numerical and morphological changes in primary sensory neurons and satellite cells in the dorsal root ganglion 30 days following chronic compression, crush, and transection injuries using stereology, high-resolution light microscopy, immunohistochemistry, and behavioral analysis techniques. Electron microscopic methods were employed to evaluate fine structural alterations in cells. Stereological evaluations revealed no statistically significant difference in terms of mean sensory neuron numbers (p > 0.05), although a significant decrease was observed in sensory neuron volumes in the transection and crush injury groups (p < 0.05). Active caspase-3 immunopositivity increased in the injury groups compared to the sham group (p < 0.05). While crush injury led to desensitization, chronic compression injury caused thermal hyperalgesia. Macrophage infiltrations were observed in all injury types. Electron microscopic results revealed that the chromatolysis response was triggered in the sensory neuron bodies from the transection injury group. An increase in organelle density was observed in the perikaryon of sensory neurons after crush-type injury. This indicates the presence of a more active regeneration process in crush-type injury than in other types. The effect of chronic compression injury is more devastating than that of crush-type injury, and the edema caused by compression significantly inhibits the regeneration process.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":" ","pages":"145-163"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The histomorphological and stereological assessment of rat dorsal root ganglion tissues after various types of sciatic nerve injury.\",\"authors\":\"Burcu Delibaş, Suleyman Kaplan\",\"doi\":\"10.1007/s00418-023-02242-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peripheral nerve injuries lead to significant changes in the dorsal root ganglia, where the cell bodies of the damaged axons are located. The sensory neurons and the surrounding satellite cells rearrange the composition of the intracellular organelles to enhance their plasticity for adaptation to changing conditions and response to injury. Meanwhile, satellite cells acquire phagocytic properties and work with macrophages to eliminate degenerated neurons. These structural and functional changes are not identical in all injury types. Understanding the cellular response, which varies according to the type of injury involved, is essential in determining the optimal method of treatment. In this research, we investigated the numerical and morphological changes in primary sensory neurons and satellite cells in the dorsal root ganglion 30 days following chronic compression, crush, and transection injuries using stereology, high-resolution light microscopy, immunohistochemistry, and behavioral analysis techniques. Electron microscopic methods were employed to evaluate fine structural alterations in cells. Stereological evaluations revealed no statistically significant difference in terms of mean sensory neuron numbers (p > 0.05), although a significant decrease was observed in sensory neuron volumes in the transection and crush injury groups (p < 0.05). Active caspase-3 immunopositivity increased in the injury groups compared to the sham group (p < 0.05). While crush injury led to desensitization, chronic compression injury caused thermal hyperalgesia. Macrophage infiltrations were observed in all injury types. Electron microscopic results revealed that the chromatolysis response was triggered in the sensory neuron bodies from the transection injury group. An increase in organelle density was observed in the perikaryon of sensory neurons after crush-type injury. This indicates the presence of a more active regeneration process in crush-type injury than in other types. The effect of chronic compression injury is more devastating than that of crush-type injury, and the edema caused by compression significantly inhibits the regeneration process.</p>\",\"PeriodicalId\":13107,\"journal\":{\"name\":\"Histochemistry and Cell Biology\",\"volume\":\" \",\"pages\":\"145-163\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Histochemistry and Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00418-023-02242-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00418-023-02242-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

外周神经损伤导致受损轴突细胞体所在的背根神经节发生显著变化。感觉神经元和周围的卫星细胞重新排列细胞内细胞器的组成,以增强其可塑性,从而适应不断变化的条件和对损伤的反应。同时,卫星细胞获得吞噬特性,并与巨噬细胞一起消除退化的神经元。并非所有损伤类型的结构和功能变化都相同。了解细胞反应,根据所涉及的损伤类型而变化,对于确定最佳治疗方法至关重要。在这项研究中,我们使用体视学、高分辨率光学显微镜、免疫组织化学和行为分析技术研究了慢性压迫、挤压和横断损伤后30天背根神经节初级感觉神经元和卫星细胞的数量和形态变化。采用电子显微镜方法来评估细胞中精细的结构变化。体视学评估显示,在平均感觉神经元数量方面没有统计学上的显著差异(p > 0.05),尽管在横断和挤压损伤组中观察到感觉神经元体积显著减少(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The histomorphological and stereological assessment of rat dorsal root ganglion tissues after various types of sciatic nerve injury.

The histomorphological and stereological assessment of rat dorsal root ganglion tissues after various types of sciatic nerve injury.

Peripheral nerve injuries lead to significant changes in the dorsal root ganglia, where the cell bodies of the damaged axons are located. The sensory neurons and the surrounding satellite cells rearrange the composition of the intracellular organelles to enhance their plasticity for adaptation to changing conditions and response to injury. Meanwhile, satellite cells acquire phagocytic properties and work with macrophages to eliminate degenerated neurons. These structural and functional changes are not identical in all injury types. Understanding the cellular response, which varies according to the type of injury involved, is essential in determining the optimal method of treatment. In this research, we investigated the numerical and morphological changes in primary sensory neurons and satellite cells in the dorsal root ganglion 30 days following chronic compression, crush, and transection injuries using stereology, high-resolution light microscopy, immunohistochemistry, and behavioral analysis techniques. Electron microscopic methods were employed to evaluate fine structural alterations in cells. Stereological evaluations revealed no statistically significant difference in terms of mean sensory neuron numbers (p > 0.05), although a significant decrease was observed in sensory neuron volumes in the transection and crush injury groups (p < 0.05). Active caspase-3 immunopositivity increased in the injury groups compared to the sham group (p < 0.05). While crush injury led to desensitization, chronic compression injury caused thermal hyperalgesia. Macrophage infiltrations were observed in all injury types. Electron microscopic results revealed that the chromatolysis response was triggered in the sensory neuron bodies from the transection injury group. An increase in organelle density was observed in the perikaryon of sensory neurons after crush-type injury. This indicates the presence of a more active regeneration process in crush-type injury than in other types. The effect of chronic compression injury is more devastating than that of crush-type injury, and the edema caused by compression significantly inhibits the regeneration process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Histochemistry and Cell Biology
Histochemistry and Cell Biology 生物-细胞生物学
CiteScore
4.90
自引率
8.70%
发文量
112
审稿时长
1 months
期刊介绍: Histochemistry and Cell Biology is devoted to the field of molecular histology and cell biology, publishing original articles dealing with the localization and identification of molecular components, metabolic activities and cell biological aspects of cells and tissues. Coverage extends to the development, application, and/or evaluation of methods and probes that can be used in the entire area of histochemistry and cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信