He Huang, Yukun Zhang, Lan Gui, Li Zhang, Minglong Cai, Yujun Sheng
{"title":"蛋白质组学分析显示胱抑素c是一种很有前途的评估系统性红斑狼疮的生物标志物。","authors":"He Huang, Yukun Zhang, Lan Gui, Li Zhang, Minglong Cai, Yujun Sheng","doi":"10.1186/s12014-023-09434-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Systemic lupus erythematosus (SLE) is an autoimmune disease with multiple organ involvement, especially the kidneys. However, the underlying mechanism remains unclear, and accurate biomarkers are still lacking. This study aimed to identify biomarkers to assess organ damage and disease activity in patients with SLE using quantitative proteomics.</p><p><strong>Methods: </strong>Proteomic analysis was performed using mass spectrometry in 15 patients with SLE and 15 age-matched healthy controls. Proteomic profiles were compared in four main subtypes: SLE with proteinuria (SLE-PN), SLE without proteinuria (SLE-non-PN), SLE with anti-dsDNA positivity (SLE-DP), and SLE with anti-dsDNA negativity (SLE-non-DP). Gene ontology biological process analysis revealed differentially expressed protein networks. Cystatin C (CysC) levels were measured in 200 patients with SLE using an immunoturbidimetric assay. Clinical and laboratory data were collected to assess their correlation with serum CysC levels.</p><p><strong>Results: </strong>Proteomic analysis showed that upregulated proteins in both the SLE-PN and SLE-DP groups were mainly mapped to neutrophil activation networks. Moreover, CysC from neutrophil activation networks was upregulated in both the SLE-PN and SLE-DP groups. The associations of serum CysC level with proteinuria, anti-dsDNA positivity, lower complement C3 levels, and SLE disease activity index score in patients with SLE were further validated in a large independent cohort.</p><p><strong>Conclusions: </strong>Neutrophil activation is more prominent in SLE with proteinuria and anti-dsDNA positivity, and CysC is a promising marker for monitoring organ damage and disease activity in SLE.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583312/pdf/","citationCount":"0","resultStr":"{\"title\":\"Proteomic analyses reveal cystatin c is a promising biomarker for evaluation of systemic lupus erythematosus.\",\"authors\":\"He Huang, Yukun Zhang, Lan Gui, Li Zhang, Minglong Cai, Yujun Sheng\",\"doi\":\"10.1186/s12014-023-09434-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Systemic lupus erythematosus (SLE) is an autoimmune disease with multiple organ involvement, especially the kidneys. However, the underlying mechanism remains unclear, and accurate biomarkers are still lacking. This study aimed to identify biomarkers to assess organ damage and disease activity in patients with SLE using quantitative proteomics.</p><p><strong>Methods: </strong>Proteomic analysis was performed using mass spectrometry in 15 patients with SLE and 15 age-matched healthy controls. Proteomic profiles were compared in four main subtypes: SLE with proteinuria (SLE-PN), SLE without proteinuria (SLE-non-PN), SLE with anti-dsDNA positivity (SLE-DP), and SLE with anti-dsDNA negativity (SLE-non-DP). Gene ontology biological process analysis revealed differentially expressed protein networks. Cystatin C (CysC) levels were measured in 200 patients with SLE using an immunoturbidimetric assay. Clinical and laboratory data were collected to assess their correlation with serum CysC levels.</p><p><strong>Results: </strong>Proteomic analysis showed that upregulated proteins in both the SLE-PN and SLE-DP groups were mainly mapped to neutrophil activation networks. Moreover, CysC from neutrophil activation networks was upregulated in both the SLE-PN and SLE-DP groups. The associations of serum CysC level with proteinuria, anti-dsDNA positivity, lower complement C3 levels, and SLE disease activity index score in patients with SLE were further validated in a large independent cohort.</p><p><strong>Conclusions: </strong>Neutrophil activation is more prominent in SLE with proteinuria and anti-dsDNA positivity, and CysC is a promising marker for monitoring organ damage and disease activity in SLE.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583312/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12014-023-09434-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12014-023-09434-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Proteomic analyses reveal cystatin c is a promising biomarker for evaluation of systemic lupus erythematosus.
Background: Systemic lupus erythematosus (SLE) is an autoimmune disease with multiple organ involvement, especially the kidneys. However, the underlying mechanism remains unclear, and accurate biomarkers are still lacking. This study aimed to identify biomarkers to assess organ damage and disease activity in patients with SLE using quantitative proteomics.
Methods: Proteomic analysis was performed using mass spectrometry in 15 patients with SLE and 15 age-matched healthy controls. Proteomic profiles were compared in four main subtypes: SLE with proteinuria (SLE-PN), SLE without proteinuria (SLE-non-PN), SLE with anti-dsDNA positivity (SLE-DP), and SLE with anti-dsDNA negativity (SLE-non-DP). Gene ontology biological process analysis revealed differentially expressed protein networks. Cystatin C (CysC) levels were measured in 200 patients with SLE using an immunoturbidimetric assay. Clinical and laboratory data were collected to assess their correlation with serum CysC levels.
Results: Proteomic analysis showed that upregulated proteins in both the SLE-PN and SLE-DP groups were mainly mapped to neutrophil activation networks. Moreover, CysC from neutrophil activation networks was upregulated in both the SLE-PN and SLE-DP groups. The associations of serum CysC level with proteinuria, anti-dsDNA positivity, lower complement C3 levels, and SLE disease activity index score in patients with SLE were further validated in a large independent cohort.
Conclusions: Neutrophil activation is more prominent in SLE with proteinuria and anti-dsDNA positivity, and CysC is a promising marker for monitoring organ damage and disease activity in SLE.