Minjoo Song , Quoc Bien Nguyen , Cheolyong Kim , Inseong Hwang
{"title":"通过从二氧化硅包覆的纳米零价铁中缓慢释放Fe(II)来持续活化过硫酸盐,用于原位化学氧化。","authors":"Minjoo Song , Quoc Bien Nguyen , Cheolyong Kim , Inseong Hwang","doi":"10.1016/j.watres.2023.120715","DOIUrl":null,"url":null,"abstract":"<div><p>Sustained activation of persulfate through the slow release of Fe(II) from silica-coated nanosized zero-valent iron (nZVI) particles (nZVI@SiO<sub>2</sub><span>) was investigated. Slow release of Fe(II) prevented radical scavenging by excess Fe(II) and increased the radical yield, which improved the stoichiometric efficiency of phenol degradation. Sulfate and hydroxyl radicals were found to be the main oxidative species produced during phenol degradation and were found to make comparable contributions to oxidation. The nZVI@SiO</span><sub>2</sub> particle silica shell thickness controlled the release of Fe(II) and therefore the sustained activation of persulfate and was strongly affected by the synthesis conditions, including the [Si]/[Fe] ratio and silica supply rate. Optimal sustained phenol degradation was achieved when nZVI@SiO<sub>2</sub><span> particles were synthesized using a [Si]/[Fe] ratio of 0.5 and a tetraethyl orthosilicate supply rate of 0.5 mL/min, and this was attributed to the nZVI@SiO</span><sub>2</sub> particles giving an optimal Fe(II) release rate and therefore a high persulfate activation rate and a high phenol removal efficiency. Sustained persulfate activation induced by Fe(II) being slowly released was described well by single-stage first-order kinetics rather than two-stage first-order kinetics typical of unmodified nZVI/persulfate systems. Persulfate was found still to be activated by iron (oxyhydr)oxides minerals after the nZVI@SiO<sub>2</sub> particles had been exhausted but the persulfate sustained activation induced by the slow release of Fe(II) played a crucial role in determining the overall degradation efficiency. The results highlight the importance of the slow release of Fe(II) from nZVI-based materials for in situ chemical oxidation through sustained persulfate activation.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"246 ","pages":"Article 120715"},"PeriodicalIF":11.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sustained activation of persulfate by slow release of Fe(II) from silica-coated nanosized zero-valent iron for in situ chemical oxidation\",\"authors\":\"Minjoo Song , Quoc Bien Nguyen , Cheolyong Kim , Inseong Hwang\",\"doi\":\"10.1016/j.watres.2023.120715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sustained activation of persulfate through the slow release of Fe(II) from silica-coated nanosized zero-valent iron (nZVI) particles (nZVI@SiO<sub>2</sub><span>) was investigated. Slow release of Fe(II) prevented radical scavenging by excess Fe(II) and increased the radical yield, which improved the stoichiometric efficiency of phenol degradation. Sulfate and hydroxyl radicals were found to be the main oxidative species produced during phenol degradation and were found to make comparable contributions to oxidation. The nZVI@SiO</span><sub>2</sub> particle silica shell thickness controlled the release of Fe(II) and therefore the sustained activation of persulfate and was strongly affected by the synthesis conditions, including the [Si]/[Fe] ratio and silica supply rate. Optimal sustained phenol degradation was achieved when nZVI@SiO<sub>2</sub><span> particles were synthesized using a [Si]/[Fe] ratio of 0.5 and a tetraethyl orthosilicate supply rate of 0.5 mL/min, and this was attributed to the nZVI@SiO</span><sub>2</sub> particles giving an optimal Fe(II) release rate and therefore a high persulfate activation rate and a high phenol removal efficiency. Sustained persulfate activation induced by Fe(II) being slowly released was described well by single-stage first-order kinetics rather than two-stage first-order kinetics typical of unmodified nZVI/persulfate systems. Persulfate was found still to be activated by iron (oxyhydr)oxides minerals after the nZVI@SiO<sub>2</sub> particles had been exhausted but the persulfate sustained activation induced by the slow release of Fe(II) played a crucial role in determining the overall degradation efficiency. The results highlight the importance of the slow release of Fe(II) from nZVI-based materials for in situ chemical oxidation through sustained persulfate activation.</p></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"246 \",\"pages\":\"Article 120715\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043135423011557\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135423011557","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Sustained activation of persulfate by slow release of Fe(II) from silica-coated nanosized zero-valent iron for in situ chemical oxidation
Sustained activation of persulfate through the slow release of Fe(II) from silica-coated nanosized zero-valent iron (nZVI) particles (nZVI@SiO2) was investigated. Slow release of Fe(II) prevented radical scavenging by excess Fe(II) and increased the radical yield, which improved the stoichiometric efficiency of phenol degradation. Sulfate and hydroxyl radicals were found to be the main oxidative species produced during phenol degradation and were found to make comparable contributions to oxidation. The nZVI@SiO2 particle silica shell thickness controlled the release of Fe(II) and therefore the sustained activation of persulfate and was strongly affected by the synthesis conditions, including the [Si]/[Fe] ratio and silica supply rate. Optimal sustained phenol degradation was achieved when nZVI@SiO2 particles were synthesized using a [Si]/[Fe] ratio of 0.5 and a tetraethyl orthosilicate supply rate of 0.5 mL/min, and this was attributed to the nZVI@SiO2 particles giving an optimal Fe(II) release rate and therefore a high persulfate activation rate and a high phenol removal efficiency. Sustained persulfate activation induced by Fe(II) being slowly released was described well by single-stage first-order kinetics rather than two-stage first-order kinetics typical of unmodified nZVI/persulfate systems. Persulfate was found still to be activated by iron (oxyhydr)oxides minerals after the nZVI@SiO2 particles had been exhausted but the persulfate sustained activation induced by the slow release of Fe(II) played a crucial role in determining the overall degradation efficiency. The results highlight the importance of the slow release of Fe(II) from nZVI-based materials for in situ chemical oxidation through sustained persulfate activation.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.