Fernando B. Okasaki, Luís G.T.A. Duarte, Edvaldo Sabadini
{"title":"通过形成蠕虫状胶束增加麻醉剂丙泊酚的水溶性。","authors":"Fernando B. Okasaki, Luís G.T.A. Duarte, Edvaldo Sabadini","doi":"10.1016/j.colsurfb.2023.113592","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Propofol, a </span>phenol<span><span> derivative, is commonly employed as an intravenous anesthetic during clinical procedures, formulated as an oil/water emulsion due to its poor solubility in water. The stability limitations associated with emulsions have prompted research efforts towards developing aqueous formulations of propofol. In this work, we investigate the solubility enhancement of propofol in anionic and </span>cationic surfactants<span>. Our findings reveal that the solubility of propofol can increase significantly, up to 100-fold, depending on the nature of the micellar aggregate, as observed for alkylammonium halogenates CnTAB (for n = 12, 14 and 16), contrasting with the lower solubility with SDS. Interestingly, C</span></span></span><sub>14</sub>TAB and C<sub>16</sub>TAB demonstrate significantly higher solubility than C<sub>12</sub><span><span>TAB. This was attributed to the formation of wormlike micelles, in which the propofol molecules are positioned between the cationic heads of the </span>surfactant molecules, changing the micellar curvature and the morphology of the aggregate. Therefore, the aromatic molecules in the micellar environment can be partitioned into the micellar cores and their palisades. Regarding C</span><sub>12</sub><span><span>TAB, the alkyl chain is too short to form wormlike micelles, thus, concentrating propofol molecules mainly into the micellar core, and consequently, leading to their aggregation. Solubility diagrams of propofol were constructed in conjunction with different surfactants. The systems exhibiting </span>viscoelastic behavior<span>, indicative of wormlike micelle formation, were further investigated using rheology. Additionally, the fluorescent properties of propofol enabled the examination of the anesthetic molecule within diverse micellar environments.</span></span></p></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"232 ","pages":"Article 113592"},"PeriodicalIF":5.4000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increasing the aqueous solubility of the anesthetic propofol through wormlike micelle formation\",\"authors\":\"Fernando B. Okasaki, Luís G.T.A. Duarte, Edvaldo Sabadini\",\"doi\":\"10.1016/j.colsurfb.2023.113592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Propofol, a </span>phenol<span><span> derivative, is commonly employed as an intravenous anesthetic during clinical procedures, formulated as an oil/water emulsion due to its poor solubility in water. The stability limitations associated with emulsions have prompted research efforts towards developing aqueous formulations of propofol. In this work, we investigate the solubility enhancement of propofol in anionic and </span>cationic surfactants<span>. Our findings reveal that the solubility of propofol can increase significantly, up to 100-fold, depending on the nature of the micellar aggregate, as observed for alkylammonium halogenates CnTAB (for n = 12, 14 and 16), contrasting with the lower solubility with SDS. Interestingly, C</span></span></span><sub>14</sub>TAB and C<sub>16</sub>TAB demonstrate significantly higher solubility than C<sub>12</sub><span><span>TAB. This was attributed to the formation of wormlike micelles, in which the propofol molecules are positioned between the cationic heads of the </span>surfactant molecules, changing the micellar curvature and the morphology of the aggregate. Therefore, the aromatic molecules in the micellar environment can be partitioned into the micellar cores and their palisades. Regarding C</span><sub>12</sub><span><span>TAB, the alkyl chain is too short to form wormlike micelles, thus, concentrating propofol molecules mainly into the micellar core, and consequently, leading to their aggregation. Solubility diagrams of propofol were constructed in conjunction with different surfactants. The systems exhibiting </span>viscoelastic behavior<span>, indicative of wormlike micelle formation, were further investigated using rheology. Additionally, the fluorescent properties of propofol enabled the examination of the anesthetic molecule within diverse micellar environments.</span></span></p></div>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"232 \",\"pages\":\"Article 113592\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927776523004708\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776523004708","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Increasing the aqueous solubility of the anesthetic propofol through wormlike micelle formation
Propofol, a phenol derivative, is commonly employed as an intravenous anesthetic during clinical procedures, formulated as an oil/water emulsion due to its poor solubility in water. The stability limitations associated with emulsions have prompted research efforts towards developing aqueous formulations of propofol. In this work, we investigate the solubility enhancement of propofol in anionic and cationic surfactants. Our findings reveal that the solubility of propofol can increase significantly, up to 100-fold, depending on the nature of the micellar aggregate, as observed for alkylammonium halogenates CnTAB (for n = 12, 14 and 16), contrasting with the lower solubility with SDS. Interestingly, C14TAB and C16TAB demonstrate significantly higher solubility than C12TAB. This was attributed to the formation of wormlike micelles, in which the propofol molecules are positioned between the cationic heads of the surfactant molecules, changing the micellar curvature and the morphology of the aggregate. Therefore, the aromatic molecules in the micellar environment can be partitioned into the micellar cores and their palisades. Regarding C12TAB, the alkyl chain is too short to form wormlike micelles, thus, concentrating propofol molecules mainly into the micellar core, and consequently, leading to their aggregation. Solubility diagrams of propofol were constructed in conjunction with different surfactants. The systems exhibiting viscoelastic behavior, indicative of wormlike micelle formation, were further investigated using rheology. Additionally, the fluorescent properties of propofol enabled the examination of the anesthetic molecule within diverse micellar environments.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.