Abinash Das, Dongyu Liu, Riu Riu Wary, Andrey S. Vasenko, Oleg V. Prezhdo* and Ranjith G. Nair*,
{"title":"Mn修饰ZnO纳米片在可见光下的最佳光电化学性能:实验设计和理论合理化。","authors":"Abinash Das, Dongyu Liu, Riu Riu Wary, Andrey S. Vasenko, Oleg V. Prezhdo* and Ranjith G. Nair*, ","doi":"10.1021/acs.jpclett.3c02730","DOIUrl":null,"url":null,"abstract":"<p >Doping of zinc oxide (ZnO) with manganese (Mn) tunes midbandgap states of ZnO to enhance its optical properties and makes it into an efficient photoactive material for photoelectrochemical water splitting, waste removal from water, and other applications. We demonstrate that ZnO modified with 1 at. % Mn exhibits the best performance, as rationalized by experimental, structural, and optical characterization and theoretical analysis. ZnO doped with the optimal Mn content possesses improved light absorption in the visible region and minimizes charge carrier recombination. The doping is substitutional and creates midgap states near the valence band. Mn atoms break localized charge traps at oxygen vacancy sites and eliminate photoluminescence peaks associated with oxygen vacancies. The optimal performance of Mn-modified ZnO is demonstrated with the photodegradation of Congo red and photoelectrochemical water splitting.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 43","pages":"9604–9611"},"PeriodicalIF":4.8000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mn-Modified ZnO Nanoflakes for Optimal Photoelectrochemical Performance Under Visible Light: Experimental Design and Theoretical Rationalization\",\"authors\":\"Abinash Das, Dongyu Liu, Riu Riu Wary, Andrey S. Vasenko, Oleg V. Prezhdo* and Ranjith G. Nair*, \",\"doi\":\"10.1021/acs.jpclett.3c02730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Doping of zinc oxide (ZnO) with manganese (Mn) tunes midbandgap states of ZnO to enhance its optical properties and makes it into an efficient photoactive material for photoelectrochemical water splitting, waste removal from water, and other applications. We demonstrate that ZnO modified with 1 at. % Mn exhibits the best performance, as rationalized by experimental, structural, and optical characterization and theoretical analysis. ZnO doped with the optimal Mn content possesses improved light absorption in the visible region and minimizes charge carrier recombination. The doping is substitutional and creates midgap states near the valence band. Mn atoms break localized charge traps at oxygen vacancy sites and eliminate photoluminescence peaks associated with oxygen vacancies. The optimal performance of Mn-modified ZnO is demonstrated with the photodegradation of Congo red and photoelectrochemical water splitting.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"14 43\",\"pages\":\"9604–9611\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.3c02730\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.3c02730","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Mn-Modified ZnO Nanoflakes for Optimal Photoelectrochemical Performance Under Visible Light: Experimental Design and Theoretical Rationalization
Doping of zinc oxide (ZnO) with manganese (Mn) tunes midbandgap states of ZnO to enhance its optical properties and makes it into an efficient photoactive material for photoelectrochemical water splitting, waste removal from water, and other applications. We demonstrate that ZnO modified with 1 at. % Mn exhibits the best performance, as rationalized by experimental, structural, and optical characterization and theoretical analysis. ZnO doped with the optimal Mn content possesses improved light absorption in the visible region and minimizes charge carrier recombination. The doping is substitutional and creates midgap states near the valence band. Mn atoms break localized charge traps at oxygen vacancy sites and eliminate photoluminescence peaks associated with oxygen vacancies. The optimal performance of Mn-modified ZnO is demonstrated with the photodegradation of Congo red and photoelectrochemical water splitting.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.