基于高压电化学爆炸的组合电源合成

IF 1.1 Q4 ELECTROCHEMISTRY
A. I. Vovchenko, L. Yu. Demidenko, S. S. Kozyrev, L. E. Ovchinnikova
{"title":"基于高压电化学爆炸的组合电源合成","authors":"A. I. Vovchenko,&nbsp;L. Yu. Demidenko,&nbsp;S. S. Kozyrev,&nbsp;L. E. Ovchinnikova","doi":"10.3103/S1068375523050174","DOIUrl":null,"url":null,"abstract":"<div><div><h3>\n <b>Abstract</b>—</h3><p>A stepwise algorithm was developed for the synthesis of combined power sources based on high-voltage electrochemical explosion (HVECE). These sources ensure the necessary spatial-temporal force and energy effects on objects of treatment to perform specific technological operations. Initially, a power source is synthesized based on high-voltage electrical discharge in condensed media through solving inverse synthesis problems. This determines the required total energy, which is then optimally divided into electrical and chemical components. The dependences of the force impact on the object of treatment on the energy characteristics of HVECE were experimentally studied. Based on the experimental results, criteria for the optimal division of the required total energy into the electrical and chemical components were established. A specific application example of the developed algorithm for the synthesis of a combined power source based on HVECE is provided, which confirmed that it can be used for engineering calculations.</p></div></div>","PeriodicalId":49315,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"59 5","pages":"690 - 697"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Combined Power Sources Based on High-Voltage Electrochemical Explosion\",\"authors\":\"A. I. Vovchenko,&nbsp;L. Yu. Demidenko,&nbsp;S. S. Kozyrev,&nbsp;L. E. Ovchinnikova\",\"doi\":\"10.3103/S1068375523050174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><h3>\\n <b>Abstract</b>—</h3><p>A stepwise algorithm was developed for the synthesis of combined power sources based on high-voltage electrochemical explosion (HVECE). These sources ensure the necessary spatial-temporal force and energy effects on objects of treatment to perform specific technological operations. Initially, a power source is synthesized based on high-voltage electrical discharge in condensed media through solving inverse synthesis problems. This determines the required total energy, which is then optimally divided into electrical and chemical components. The dependences of the force impact on the object of treatment on the energy characteristics of HVECE were experimentally studied. Based on the experimental results, criteria for the optimal division of the required total energy into the electrical and chemical components were established. A specific application example of the developed algorithm for the synthesis of a combined power source based on HVECE is provided, which confirmed that it can be used for engineering calculations.</p></div></div>\",\"PeriodicalId\":49315,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"59 5\",\"pages\":\"690 - 697\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068375523050174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375523050174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

摘要——提出了一种基于高压电化学爆炸(HVECE)的组合电源合成的分步算法。这些来源确保了对治疗对象产生必要的时空力和能量影响,以执行特定的技术操作。首先,通过求解逆合成问题,基于凝聚介质中的高压放电合成电源。这决定了所需的总能量,然后将其最佳地划分为电气和化学成分。实验研究了HVECE能量特性对处理对象的力冲击的依赖性。根据实验结果,建立了将所需总能量最佳划分为电气和化学成分的标准。给出了基于HVECE的组合电源综合算法的具体应用实例,证实了该算法可用于工程计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis of Combined Power Sources Based on High-Voltage Electrochemical Explosion

Synthesis of Combined Power Sources Based on High-Voltage Electrochemical Explosion

Abstract

A stepwise algorithm was developed for the synthesis of combined power sources based on high-voltage electrochemical explosion (HVECE). These sources ensure the necessary spatial-temporal force and energy effects on objects of treatment to perform specific technological operations. Initially, a power source is synthesized based on high-voltage electrical discharge in condensed media through solving inverse synthesis problems. This determines the required total energy, which is then optimally divided into electrical and chemical components. The dependences of the force impact on the object of treatment on the energy characteristics of HVECE were experimentally studied. Based on the experimental results, criteria for the optimal division of the required total energy into the electrical and chemical components were established. A specific application example of the developed algorithm for the synthesis of a combined power source based on HVECE is provided, which confirmed that it can be used for engineering calculations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Engineering and Applied Electrochemistry
Surface Engineering and Applied Electrochemistry Engineering-Industrial and Manufacturing Engineering
CiteScore
1.70
自引率
22.20%
发文量
54
审稿时长
6 months
期刊介绍: Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信