超高温热光电的光子学路线图

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2023-10-18 DOI:10.1016/j.joule.2023.08.015
Mariama Rebello Sousa Dias , Tao Gong , Margaret A. Duncan , Stuart C. Ness , Scott J. McCormack , Marina S. Leite , Jeremy N. Munday
{"title":"超高温热光电的光子学路线图","authors":"Mariama Rebello Sousa Dias ,&nbsp;Tao Gong ,&nbsp;Margaret A. Duncan ,&nbsp;Stuart C. Ness ,&nbsp;Scott J. McCormack ,&nbsp;Marina S. Leite ,&nbsp;Jeremy N. Munday","doi":"10.1016/j.joule.2023.08.015","DOIUrl":null,"url":null,"abstract":"<div><p>The ability to control thermal emission is crucial for the thermal regulation of devices, barrier coatings, and thermophotovoltaic (TPV) systems. However, only a limited number of naturally occurring materials are stable at high temperatures (&gt;1,800°C), and their emission spectra are set <em>a priori</em> by their intrinsic optical properties. Optical structures involving nanoscale textures can result in tunable emission spectra, albeit stable only at much lower temperatures. Here, we present an alternative approach that enables temperatures beyond 1,800°C through a bilayer stack achieved by combining the optical and thermal properties of 2,809 coating/substrate pairs. By varying the film thickness, we tailor the emission spectrum to create high-temperature, stable emitters. We illustrate this effect in combination with the most common TPV systems (GaSb, Ge, InGaAs, and InGaAsSb), showing power conversion efficiencies approaching 50% and power outputs as high as 10.2 W cm<sup>−2</sup>. These concepts can be expanded to other high-temperature photonic applications for the spectral control of thermal emission.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"7 10","pages":"Pages 2209-2227"},"PeriodicalIF":38.6000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photonics roadmap for ultra-high-temperature thermophotovoltaics\",\"authors\":\"Mariama Rebello Sousa Dias ,&nbsp;Tao Gong ,&nbsp;Margaret A. Duncan ,&nbsp;Stuart C. Ness ,&nbsp;Scott J. McCormack ,&nbsp;Marina S. Leite ,&nbsp;Jeremy N. Munday\",\"doi\":\"10.1016/j.joule.2023.08.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ability to control thermal emission is crucial for the thermal regulation of devices, barrier coatings, and thermophotovoltaic (TPV) systems. However, only a limited number of naturally occurring materials are stable at high temperatures (&gt;1,800°C), and their emission spectra are set <em>a priori</em> by their intrinsic optical properties. Optical structures involving nanoscale textures can result in tunable emission spectra, albeit stable only at much lower temperatures. Here, we present an alternative approach that enables temperatures beyond 1,800°C through a bilayer stack achieved by combining the optical and thermal properties of 2,809 coating/substrate pairs. By varying the film thickness, we tailor the emission spectrum to create high-temperature, stable emitters. We illustrate this effect in combination with the most common TPV systems (GaSb, Ge, InGaAs, and InGaAsSb), showing power conversion efficiencies approaching 50% and power outputs as high as 10.2 W cm<sup>−2</sup>. These concepts can be expanded to other high-temperature photonic applications for the spectral control of thermal emission.</p></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"7 10\",\"pages\":\"Pages 2209-2227\"},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435123003616\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435123003616","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

控制热发射的能力对于器件、阻挡涂层和热光电(TPV)系统的热调节至关重要。然而,只有有限数量的天然存在的材料在高温(>;1800°C)下是稳定的,并且它们的发射光谱是由其固有的光学特性预先设定的。涉及纳米级纹理的光学结构可以产生可调谐的发射光谱,尽管只有在低得多的温度下才稳定。在这里,我们提出了一种替代方法,通过结合2809对涂层/基底的光学和热性能,实现双层堆叠,使温度超过1800°C。通过改变薄膜厚度,我们调整了发射光谱,以产生高温、稳定的发射器。我们结合最常见的TPV系统(GaSb、Ge、InGaAs和InGaAsSb)来说明这种效应,显示出接近50%的功率转换效率和高达10.2 W cm−2的功率输出。这些概念可以扩展到用于热发射光谱控制的其他高温光子应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photonics roadmap for ultra-high-temperature thermophotovoltaics

Photonics roadmap for ultra-high-temperature thermophotovoltaics

The ability to control thermal emission is crucial for the thermal regulation of devices, barrier coatings, and thermophotovoltaic (TPV) systems. However, only a limited number of naturally occurring materials are stable at high temperatures (>1,800°C), and their emission spectra are set a priori by their intrinsic optical properties. Optical structures involving nanoscale textures can result in tunable emission spectra, albeit stable only at much lower temperatures. Here, we present an alternative approach that enables temperatures beyond 1,800°C through a bilayer stack achieved by combining the optical and thermal properties of 2,809 coating/substrate pairs. By varying the film thickness, we tailor the emission spectrum to create high-temperature, stable emitters. We illustrate this effect in combination with the most common TPV systems (GaSb, Ge, InGaAs, and InGaAsSb), showing power conversion efficiencies approaching 50% and power outputs as high as 10.2 W cm−2. These concepts can be expanded to other high-temperature photonic applications for the spectral control of thermal emission.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信