参数边界条件下(p,q,r)-拉普拉斯算子的特征值

IF 1.4 4区 数学 Q1 MATHEMATICS
L. Barbu, G. Moroşanu
{"title":"参数边界条件下(p,q,r)-拉普拉斯算子的特征值","authors":"L. Barbu, G. Moroşanu","doi":"10.37193/cjm.2022.03.03","DOIUrl":null,"url":null,"abstract":"\"Consider in a bounded domain $\\Omega \\subset \\mathbb{R}^N$, $N\\ge 2$, with smooth boundary $\\partial \\Omega$ the following nonlinear eigenvalue problem \\begin{equation*} \\left\\{\\begin{array}{l} -\\sum_{\\alpha \\in \\{ p,q,r\\}}\\rho_{\\alpha}\\Delta_{\\alpha}u=\\lambda a(x) \\mid u\\mid ^{r-2}u\\ \\ \\mbox{ in} ~ \\Omega,\\\\[1mm] \\big(\\sum_{\\alpha \\in \\{p,q,r\\}}\\rho_{\\alpha}\\mid \\nabla u\\mid ^{\\alpha-2}\\big)\\frac{\\partial u}{\\partial\\nu}=\\lambda b(x) \\mid u\\mid ^{r-2}u ~ \\mbox{ on} ~ \\partial \\Omega, \\end{array}\\right. \\end{equation*} where $p, q, r\\in (1, +\\infty),~q<p,~r\\not\\in \\{p, q\\};$ $\\rho_p, \\rho_q, \\rho_r$ are positive constants; $\\Delta_{\\alpha}$ is the usual $\\alpha$-Laplacian, i.e., $\\Delta_\\alpha u=\\, \\mbox{div} \\, (|\\nabla u|^{\\alpha-2}\\nabla u)$; $\\nu$ is the unit outward normal to $\\partial \\Omega$; $a\\in L^{\\infty}(\\Omega),$ $b\\in L^{\\infty}(\\partial\\Omega)$ {are given nonnegative functions satisfying} $\\int_\\Omega a~dx+\\int_{\\partial\\Omega} b~d\\sigma >0.$ Such a triple-phase problem is motivated by some models arising in mathematical physics. If $r \\not\\in (q, p),$ we determine a positive number $\\lambda_r$ such that the set of eigenvalues of the above problem is precisely $\\{ 0\\} \\cup (\\lambda_r, +\\infty )$. On the other hand, in the complementary case $r \\in (q, p)$ with $r < q(N-1)/(N-q)$ if $q<N$, we prove that there exist two positive constants $\\lambda_*<\\lambda^*$ such that any $\\lambda\\in \\{0\\}\\cup [\\lambda^*, \\infty)$ is an eigenvalue of the above problem, while the set $(-\\infty, 0)\\cup (0, \\lambda_*)$ contains no eigenvalue $\\lambda$ of the problem.\"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"Eigenvalues of the (p, q, r)-Laplacian with a parametric boundary condition\\\"\",\"authors\":\"L. Barbu, G. Moroşanu\",\"doi\":\"10.37193/cjm.2022.03.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"Consider in a bounded domain $\\\\Omega \\\\subset \\\\mathbb{R}^N$, $N\\\\ge 2$, with smooth boundary $\\\\partial \\\\Omega$ the following nonlinear eigenvalue problem \\\\begin{equation*} \\\\left\\\\{\\\\begin{array}{l} -\\\\sum_{\\\\alpha \\\\in \\\\{ p,q,r\\\\}}\\\\rho_{\\\\alpha}\\\\Delta_{\\\\alpha}u=\\\\lambda a(x) \\\\mid u\\\\mid ^{r-2}u\\\\ \\\\ \\\\mbox{ in} ~ \\\\Omega,\\\\\\\\[1mm] \\\\big(\\\\sum_{\\\\alpha \\\\in \\\\{p,q,r\\\\}}\\\\rho_{\\\\alpha}\\\\mid \\\\nabla u\\\\mid ^{\\\\alpha-2}\\\\big)\\\\frac{\\\\partial u}{\\\\partial\\\\nu}=\\\\lambda b(x) \\\\mid u\\\\mid ^{r-2}u ~ \\\\mbox{ on} ~ \\\\partial \\\\Omega, \\\\end{array}\\\\right. \\\\end{equation*} where $p, q, r\\\\in (1, +\\\\infty),~q<p,~r\\\\not\\\\in \\\\{p, q\\\\};$ $\\\\rho_p, \\\\rho_q, \\\\rho_r$ are positive constants; $\\\\Delta_{\\\\alpha}$ is the usual $\\\\alpha$-Laplacian, i.e., $\\\\Delta_\\\\alpha u=\\\\, \\\\mbox{div} \\\\, (|\\\\nabla u|^{\\\\alpha-2}\\\\nabla u)$; $\\\\nu$ is the unit outward normal to $\\\\partial \\\\Omega$; $a\\\\in L^{\\\\infty}(\\\\Omega),$ $b\\\\in L^{\\\\infty}(\\\\partial\\\\Omega)$ {are given nonnegative functions satisfying} $\\\\int_\\\\Omega a~dx+\\\\int_{\\\\partial\\\\Omega} b~d\\\\sigma >0.$ Such a triple-phase problem is motivated by some models arising in mathematical physics. If $r \\\\not\\\\in (q, p),$ we determine a positive number $\\\\lambda_r$ such that the set of eigenvalues of the above problem is precisely $\\\\{ 0\\\\} \\\\cup (\\\\lambda_r, +\\\\infty )$. On the other hand, in the complementary case $r \\\\in (q, p)$ with $r < q(N-1)/(N-q)$ if $q<N$, we prove that there exist two positive constants $\\\\lambda_*<\\\\lambda^*$ such that any $\\\\lambda\\\\in \\\\{0\\\\}\\\\cup [\\\\lambda^*, \\\\infty)$ is an eigenvalue of the above problem, while the set $(-\\\\infty, 0)\\\\cup (0, \\\\lambda_*)$ contains no eigenvalue $\\\\lambda$ of the problem.\\\"\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2022.03.03\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2022.03.03","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

“考虑在有界域$\Omega\subet\mathbb{R}^N$,$N\ge 2$中,具有光滑边界$\partial \Omega$的下列非线性特征值问题\beart{方程*}\left\{\beart}{l}-\sum_{\alpha\in\{p,q,R}}\rho_{\aalpha}\Delta_^{r-2}u\\\mbox{in}~\Omega,\\[1mm]\big^{r-2}u~\ mbox{on}~\ partial \ Omega,\ end{array}\ right。\end{方程*},其中$p,q,r\in(1,+\infty),~q0.$这样的三相问题是由数学物理中出现的一些模型引起的。如果$r\not\in(q,p),$,我们确定一个正数$\lambda_r$,使得上述问题的特征值集恰好是$\{0\}\cup(\lambda_r,+\infty)$。另一方面,在具有$r本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
"Eigenvalues of the (p, q, r)-Laplacian with a parametric boundary condition"
"Consider in a bounded domain $\Omega \subset \mathbb{R}^N$, $N\ge 2$, with smooth boundary $\partial \Omega$ the following nonlinear eigenvalue problem \begin{equation*} \left\{\begin{array}{l} -\sum_{\alpha \in \{ p,q,r\}}\rho_{\alpha}\Delta_{\alpha}u=\lambda a(x) \mid u\mid ^{r-2}u\ \ \mbox{ in} ~ \Omega,\\[1mm] \big(\sum_{\alpha \in \{p,q,r\}}\rho_{\alpha}\mid \nabla u\mid ^{\alpha-2}\big)\frac{\partial u}{\partial\nu}=\lambda b(x) \mid u\mid ^{r-2}u ~ \mbox{ on} ~ \partial \Omega, \end{array}\right. \end{equation*} where $p, q, r\in (1, +\infty),~q0.$ Such a triple-phase problem is motivated by some models arising in mathematical physics. If $r \not\in (q, p),$ we determine a positive number $\lambda_r$ such that the set of eigenvalues of the above problem is precisely $\{ 0\} \cup (\lambda_r, +\infty )$. On the other hand, in the complementary case $r \in (q, p)$ with $r < q(N-1)/(N-q)$ if $q
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信