通过以氧化石墨烯为支撑芯的对比研究,了解还原氧化石墨烯负载聚苯胺介质纳米板增强的电流变效应

IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jinhua Yuan, Yudong Wang, Liqin Xiang, Xiaopeng Zhao, Jianbo Yin
{"title":"通过以氧化石墨烯为支撑芯的对比研究,了解还原氧化石墨烯负载聚苯胺介质纳米板增强的电流变效应","authors":"Jinhua Yuan,&nbsp;Yudong Wang,&nbsp;Liqin Xiang,&nbsp;Xiaopeng Zhao,&nbsp;Jianbo Yin","doi":"10.1049/nde2.12021","DOIUrl":null,"url":null,"abstract":"<p>Graphene has attracted scientific interest as a substrate or additive for developing high-performance stimuli-responsive materials. Research on graphene-based polymer dielectric composites has shown an enhanced electroresponsive electrorheological (ER) effect. However, the mechanism behind the enhanced electroresponse is still incompletely understood. Here, an investigation was performed into dielectric polarization and the ER effect of reduced graphene oxide-supported polyaniline nanoplates by comparing them with pure granular polyaniline and graphene oxide-supported polyaniline nanoplates based on dielectric spectroscopy and rheologic analysis. We discovered that both anisotropic morphology and electrical properties have dominant roles in the enhanced ER effect of reduced graphene oxide-supported polyaniline nanoplates, whereas only anisotropic morphology has a dominant role in the enhanced ER effect of graphene oxide-supported polyaniline nanoplates. The analysis also showed that reduced graphene oxide-supported polyaniline nanoplates have a good ER response to both DC and AC electric field actions in the wide shear rate region. This is highly desirable for practical engineering applications. Therefore, the analysis reveals the reason for the enhanced ER effect of reduced graphene oxide-supported polyaniline nanoplates and also may provide a guide for designing high-performance ER materials for practical engineering applications by combining the advantages of conducting a reduced graphene oxide core and ER active shell.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"4 3","pages":"143-154"},"PeriodicalIF":3.8000,"publicationDate":"2021-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12021","citationCount":"7","resultStr":"{\"title\":\"Understanding the enhanced electrorheological effect of reduced graphene oxide-supported polyaniline dielectric nanoplates by a comparative study with graphene oxide as the support core\",\"authors\":\"Jinhua Yuan,&nbsp;Yudong Wang,&nbsp;Liqin Xiang,&nbsp;Xiaopeng Zhao,&nbsp;Jianbo Yin\",\"doi\":\"10.1049/nde2.12021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Graphene has attracted scientific interest as a substrate or additive for developing high-performance stimuli-responsive materials. Research on graphene-based polymer dielectric composites has shown an enhanced electroresponsive electrorheological (ER) effect. However, the mechanism behind the enhanced electroresponse is still incompletely understood. Here, an investigation was performed into dielectric polarization and the ER effect of reduced graphene oxide-supported polyaniline nanoplates by comparing them with pure granular polyaniline and graphene oxide-supported polyaniline nanoplates based on dielectric spectroscopy and rheologic analysis. We discovered that both anisotropic morphology and electrical properties have dominant roles in the enhanced ER effect of reduced graphene oxide-supported polyaniline nanoplates, whereas only anisotropic morphology has a dominant role in the enhanced ER effect of graphene oxide-supported polyaniline nanoplates. The analysis also showed that reduced graphene oxide-supported polyaniline nanoplates have a good ER response to both DC and AC electric field actions in the wide shear rate region. This is highly desirable for practical engineering applications. Therefore, the analysis reveals the reason for the enhanced ER effect of reduced graphene oxide-supported polyaniline nanoplates and also may provide a guide for designing high-performance ER materials for practical engineering applications by combining the advantages of conducting a reduced graphene oxide core and ER active shell.</p>\",\"PeriodicalId\":36855,\"journal\":{\"name\":\"IET Nanodielectrics\",\"volume\":\"4 3\",\"pages\":\"143-154\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2021-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12021\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Nanodielectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 7

摘要

石墨烯作为开发高性能刺激响应材料的衬底或添加剂引起了科学界的兴趣。石墨烯基聚合物介电复合材料具有较强的电响应电流变效应。然而,电反应增强背后的机制仍然不完全清楚。本文通过电介质光谱和流变学分析,将还原氧化石墨烯负载的聚苯胺纳米片与纯颗粒聚苯胺和氧化石墨烯负载的聚苯胺纳米片进行比较,研究了还原氧化石墨烯负载的聚苯胺纳米片的介电极化和ER效应。我们发现,各向异性形貌和电学性质在还原氧化石墨烯负载的聚苯胺纳米板的内电效应增强中起主导作用,而各向异性形貌在氧化石墨烯负载的聚苯胺纳米板的内电效应增强中起主导作用。分析还表明,还原氧化石墨烯负载的聚苯胺纳米板在宽剪切速率区域对直流和交流电场作用都有良好的电流响应。这对于实际工程应用是非常理想的。因此,分析揭示了还原氧化石墨烯负载的聚苯胺纳米板增强ER效应的原因,并结合还原氧化石墨烯芯和ER活性壳的优势,为设计实际工程应用的高性能ER材料提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Understanding the enhanced electrorheological effect of reduced graphene oxide-supported polyaniline dielectric nanoplates by a comparative study with graphene oxide as the support core

Understanding the enhanced electrorheological effect of reduced graphene oxide-supported polyaniline dielectric nanoplates by a comparative study with graphene oxide as the support core

Graphene has attracted scientific interest as a substrate or additive for developing high-performance stimuli-responsive materials. Research on graphene-based polymer dielectric composites has shown an enhanced electroresponsive electrorheological (ER) effect. However, the mechanism behind the enhanced electroresponse is still incompletely understood. Here, an investigation was performed into dielectric polarization and the ER effect of reduced graphene oxide-supported polyaniline nanoplates by comparing them with pure granular polyaniline and graphene oxide-supported polyaniline nanoplates based on dielectric spectroscopy and rheologic analysis. We discovered that both anisotropic morphology and electrical properties have dominant roles in the enhanced ER effect of reduced graphene oxide-supported polyaniline nanoplates, whereas only anisotropic morphology has a dominant role in the enhanced ER effect of graphene oxide-supported polyaniline nanoplates. The analysis also showed that reduced graphene oxide-supported polyaniline nanoplates have a good ER response to both DC and AC electric field actions in the wide shear rate region. This is highly desirable for practical engineering applications. Therefore, the analysis reveals the reason for the enhanced ER effect of reduced graphene oxide-supported polyaniline nanoplates and also may provide a guide for designing high-performance ER materials for practical engineering applications by combining the advantages of conducting a reduced graphene oxide core and ER active shell.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Nanodielectrics
IET Nanodielectrics Materials Science-Materials Chemistry
CiteScore
5.60
自引率
3.70%
发文量
7
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信