中规范球的一个特征ℍ n通过水平曲率

IF 1.3 3区 数学 Q1 MATHEMATICS
Chiara Guidi, Vittorio Martino, G. Tralli
{"title":"中规范球的一个特征ℍ n通过水平曲率","authors":"Chiara Guidi, Vittorio Martino, G. Tralli","doi":"10.1515/acv-2022-0058","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we aim at identifying the level sets of the gauge norm in the Heisenberg group ℍ n {{\\mathbb{H}^{n}}} via the prescription of their (non-constant) horizontal mean curvature. We establish a uniqueness result in ℍ 1 {\\mathbb{H}^{1}} under an assumption on the location of the singular set, and in ℍ n {\\mathbb{H}^{n}} for n ≥ 2 {n\\geq 2} in the proper class of horizontally umbilical hypersurfaces.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A characterization of gauge balls in ℍ n by horizontal curvature\",\"authors\":\"Chiara Guidi, Vittorio Martino, G. Tralli\",\"doi\":\"10.1515/acv-2022-0058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we aim at identifying the level sets of the gauge norm in the Heisenberg group ℍ n {{\\\\mathbb{H}^{n}}} via the prescription of their (non-constant) horizontal mean curvature. We establish a uniqueness result in ℍ 1 {\\\\mathbb{H}^{1}} under an assumption on the location of the singular set, and in ℍ n {\\\\mathbb{H}^{n}} for n ≥ 2 {n\\\\geq 2} in the proper class of horizontally umbilical hypersurfaces.\",\"PeriodicalId\":49276,\"journal\":{\"name\":\"Advances in Calculus of Variations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Calculus of Variations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2022-0058\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2022-0058","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要在本文中,我们旨在识别Heisenberg群中规范范数的水平集ℍ n{\mathbb{H}^{n}}}}通过它们的(非常数)水平平均曲率的规定。我们在ℍ 1{\mathbb{H}^{1}}在关于奇异集位置的假设下ℍ n{\mathbb{H}^{n}}对于n≥2{n\geq2}在适当的水平脐超曲面类中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A characterization of gauge balls in ℍ n by horizontal curvature
Abstract In this paper, we aim at identifying the level sets of the gauge norm in the Heisenberg group ℍ n {{\mathbb{H}^{n}}} via the prescription of their (non-constant) horizontal mean curvature. We establish a uniqueness result in ℍ 1 {\mathbb{H}^{1}} under an assumption on the location of the singular set, and in ℍ n {\mathbb{H}^{n}} for n ≥ 2 {n\geq 2} in the proper class of horizontally umbilical hypersurfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Calculus of Variations
Advances in Calculus of Variations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.90
自引率
5.90%
发文量
35
审稿时长
>12 weeks
期刊介绍: Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信