Yanhua Wan, Yao Liu, Dongliang Chao, Wei Li, Dongyuan Zhao
{"title":"钠离子电池高初始库仑效率硬质碳阳极研究进展","authors":"Yanhua Wan, Yao Liu, Dongliang Chao, Wei Li, Dongyuan Zhao","doi":"10.1016/j.nanoms.2022.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>Initial Coulombic efficiency (ICE) has been widely adopted in battery research as a quantifiable indicator for the lifespan, energy density and rate performance of batteries. Hard carbon materials have been accepted as a promising anode family for sodium-ion batteries (SIBs) owing to their outstanding performance. However, the booming application of hard carbon anodes has been significantly slowed by the low ICE, leading to a reduced energy density at the cell level. This offers a challenge to develop high ICE hard carbon anodes to meet the applications of high-performance SIBs. Here, we discuss the definition and factors of ICE and describe several typical strategies to improve the ICE of hard carbon anodes. The strategies for boosting the ICE of such anodes are also systematically categorized into several aspects including structure design, surface engineering, electrolyte optimization and pre-sodiation. The key challenges and perspectives in the development of high ICE hard carbon anodes are also outlined.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"5 2","pages":"Pages 189-201"},"PeriodicalIF":9.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Recent advances in hard carbon anodes with high initial Coulombic efficiency for sodium-ion batteries\",\"authors\":\"Yanhua Wan, Yao Liu, Dongliang Chao, Wei Li, Dongyuan Zhao\",\"doi\":\"10.1016/j.nanoms.2022.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Initial Coulombic efficiency (ICE) has been widely adopted in battery research as a quantifiable indicator for the lifespan, energy density and rate performance of batteries. Hard carbon materials have been accepted as a promising anode family for sodium-ion batteries (SIBs) owing to their outstanding performance. However, the booming application of hard carbon anodes has been significantly slowed by the low ICE, leading to a reduced energy density at the cell level. This offers a challenge to develop high ICE hard carbon anodes to meet the applications of high-performance SIBs. Here, we discuss the definition and factors of ICE and describe several typical strategies to improve the ICE of hard carbon anodes. The strategies for boosting the ICE of such anodes are also systematically categorized into several aspects including structure design, surface engineering, electrolyte optimization and pre-sodiation. The key challenges and perspectives in the development of high ICE hard carbon anodes are also outlined.</p></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"5 2\",\"pages\":\"Pages 189-201\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965122000058\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965122000058","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Recent advances in hard carbon anodes with high initial Coulombic efficiency for sodium-ion batteries
Initial Coulombic efficiency (ICE) has been widely adopted in battery research as a quantifiable indicator for the lifespan, energy density and rate performance of batteries. Hard carbon materials have been accepted as a promising anode family for sodium-ion batteries (SIBs) owing to their outstanding performance. However, the booming application of hard carbon anodes has been significantly slowed by the low ICE, leading to a reduced energy density at the cell level. This offers a challenge to develop high ICE hard carbon anodes to meet the applications of high-performance SIBs. Here, we discuss the definition and factors of ICE and describe several typical strategies to improve the ICE of hard carbon anodes. The strategies for boosting the ICE of such anodes are also systematically categorized into several aspects including structure design, surface engineering, electrolyte optimization and pre-sodiation. The key challenges and perspectives in the development of high ICE hard carbon anodes are also outlined.
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.