{"title":"利用改进后向阶跃控制超音速进气道激波/边界层相互作用","authors":"N. Khobragade, R. Kumar","doi":"10.1007/s00193-022-01091-5","DOIUrl":null,"url":null,"abstract":"<div><p>The safe operation and performance of a mixed compression air intake critically depend on the nature of shock wave/boundary layer interactions (SBLIs). The interaction between the ramp boundary layer and the cowl shock at the ramp–isolator junction plays a key role. In this experimental study, a modified backward-facing step called “notch” is used at the ramp–isolator junction to control the SBLI in a rectangular intake at Mach 3. The unstart and performance characteristics are evaluated and compared with the baseline, “faceted” configuration. The intake was unstarted by varying the back-pressure using a choke flap located at the exit in a quasi-steady manner. The surface and rake pressure measurements in addition to the shadowgraph and oil flow visualizations were taken to characterize the effect of flow control. The results showed that the notch anchors the separation bubble at the ramp–isolator junction and helps mitigate the strength of SBLI. The notched intake static pressures are relatively lower as compared to the baseline configuration suggesting reduced severity of structural loads. The floor boundary layer is energized by the notch leading to better efficiency and flow uniformity. There is an increase in the margin of unstart due to the presence of the notch by 7–10%.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"32 6","pages":"467 - 483"},"PeriodicalIF":1.7000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of shock wave/boundary layer interactions in a supersonic air intake using a modified backward-facing step\",\"authors\":\"N. Khobragade, R. Kumar\",\"doi\":\"10.1007/s00193-022-01091-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The safe operation and performance of a mixed compression air intake critically depend on the nature of shock wave/boundary layer interactions (SBLIs). The interaction between the ramp boundary layer and the cowl shock at the ramp–isolator junction plays a key role. In this experimental study, a modified backward-facing step called “notch” is used at the ramp–isolator junction to control the SBLI in a rectangular intake at Mach 3. The unstart and performance characteristics are evaluated and compared with the baseline, “faceted” configuration. The intake was unstarted by varying the back-pressure using a choke flap located at the exit in a quasi-steady manner. The surface and rake pressure measurements in addition to the shadowgraph and oil flow visualizations were taken to characterize the effect of flow control. The results showed that the notch anchors the separation bubble at the ramp–isolator junction and helps mitigate the strength of SBLI. The notched intake static pressures are relatively lower as compared to the baseline configuration suggesting reduced severity of structural loads. The floor boundary layer is energized by the notch leading to better efficiency and flow uniformity. There is an increase in the margin of unstart due to the presence of the notch by 7–10%.</p></div>\",\"PeriodicalId\":775,\"journal\":{\"name\":\"Shock Waves\",\"volume\":\"32 6\",\"pages\":\"467 - 483\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00193-022-01091-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-022-01091-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Control of shock wave/boundary layer interactions in a supersonic air intake using a modified backward-facing step
The safe operation and performance of a mixed compression air intake critically depend on the nature of shock wave/boundary layer interactions (SBLIs). The interaction between the ramp boundary layer and the cowl shock at the ramp–isolator junction plays a key role. In this experimental study, a modified backward-facing step called “notch” is used at the ramp–isolator junction to control the SBLI in a rectangular intake at Mach 3. The unstart and performance characteristics are evaluated and compared with the baseline, “faceted” configuration. The intake was unstarted by varying the back-pressure using a choke flap located at the exit in a quasi-steady manner. The surface and rake pressure measurements in addition to the shadowgraph and oil flow visualizations were taken to characterize the effect of flow control. The results showed that the notch anchors the separation bubble at the ramp–isolator junction and helps mitigate the strength of SBLI. The notched intake static pressures are relatively lower as compared to the baseline configuration suggesting reduced severity of structural loads. The floor boundary layer is energized by the notch leading to better efficiency and flow uniformity. There is an increase in the margin of unstart due to the presence of the notch by 7–10%.
期刊介绍:
Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization.
The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine.
Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community.
The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.