基于大气折射校正的HALE无人机SIMU/三星传感器组合导航方法

IF 1.9 4区 工程技术 Q2 ENGINEERING, MARINE
Ziqian Gao, Haiyong Wang, Weihong Wang, Yuan Xu
{"title":"基于大气折射校正的HALE无人机SIMU/三星传感器组合导航方法","authors":"Ziqian Gao, Haiyong Wang, Weihong Wang, Yuan Xu","doi":"10.1017/S037346332100093X","DOIUrl":null,"url":null,"abstract":"Abstract To achieve autonomous all-day flight by high-altitude long-endurance unmanned aerial vehicle (HALE UAV), a new navigation method with deep integration of strapdown inertial measurement unit (SIMU) and triple star sensors based on atmospheric refraction correction is proposed. By analysing the atmospheric refraction model, the stellar azimuth coordinate system is introduced and the coupling relationship between attitude and position is established. Based on the geometric relationship whereby all the stellar azimuth planes intersect on the common zenith direction, the sole celestial navigation system (CNS) method by stellar refraction with triple narrow fields of view (FOVs) is studied and a loss function is built to evaluate the navigation accuracy. Finally, the new SIMU/triple star sensors deep integrated navigation method with refraction correction upgraded from the traditional inertial navigation system (INS)/CNS integrated method can be established. The results of simulations show that the proposed method can effectively restrain navigation error of a HALE UAV in 24 h steady-state cruising in the stratosphere.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"75 1","pages":"704 - 726"},"PeriodicalIF":1.9000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SIMU/Triple star sensors integrated navigation method of HALE UAV based on atmospheric refraction correction\",\"authors\":\"Ziqian Gao, Haiyong Wang, Weihong Wang, Yuan Xu\",\"doi\":\"10.1017/S037346332100093X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To achieve autonomous all-day flight by high-altitude long-endurance unmanned aerial vehicle (HALE UAV), a new navigation method with deep integration of strapdown inertial measurement unit (SIMU) and triple star sensors based on atmospheric refraction correction is proposed. By analysing the atmospheric refraction model, the stellar azimuth coordinate system is introduced and the coupling relationship between attitude and position is established. Based on the geometric relationship whereby all the stellar azimuth planes intersect on the common zenith direction, the sole celestial navigation system (CNS) method by stellar refraction with triple narrow fields of view (FOVs) is studied and a loss function is built to evaluate the navigation accuracy. Finally, the new SIMU/triple star sensors deep integrated navigation method with refraction correction upgraded from the traditional inertial navigation system (INS)/CNS integrated method can be established. The results of simulations show that the proposed method can effectively restrain navigation error of a HALE UAV in 24 h steady-state cruising in the stratosphere.\",\"PeriodicalId\":50120,\"journal\":{\"name\":\"Journal of Navigation\",\"volume\":\"75 1\",\"pages\":\"704 - 726\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Navigation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S037346332100093X\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S037346332100093X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 1

摘要

摘要为了实现高空长航时无人机(HALE UAV)的全天自主飞行,提出了一种基于大气折射校正的捷联惯性测量单元(SIMU)与三星传感器深度集成的导航新方法。通过对大气折射模型的分析,引入了恒星方位坐标系,建立了姿态与位置的耦合关系。基于所有恒星方位平面在同一天顶方向相交的几何关系,研究了利用三窄视场恒星折射的唯一天体导航系统(CNS)方法,并建立了评估导航精度的损失函数。最后,在传统惯性导航系统/CNS组合导航方法的基础上,提出了一种新的带折射校正的SIMU/三星传感器深度组合导航方法。仿真结果表明,该方法能有效抑制HALE无人机在平流层24小时稳态巡航时的导航误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SIMU/Triple star sensors integrated navigation method of HALE UAV based on atmospheric refraction correction
Abstract To achieve autonomous all-day flight by high-altitude long-endurance unmanned aerial vehicle (HALE UAV), a new navigation method with deep integration of strapdown inertial measurement unit (SIMU) and triple star sensors based on atmospheric refraction correction is proposed. By analysing the atmospheric refraction model, the stellar azimuth coordinate system is introduced and the coupling relationship between attitude and position is established. Based on the geometric relationship whereby all the stellar azimuth planes intersect on the common zenith direction, the sole celestial navigation system (CNS) method by stellar refraction with triple narrow fields of view (FOVs) is studied and a loss function is built to evaluate the navigation accuracy. Finally, the new SIMU/triple star sensors deep integrated navigation method with refraction correction upgraded from the traditional inertial navigation system (INS)/CNS integrated method can be established. The results of simulations show that the proposed method can effectively restrain navigation error of a HALE UAV in 24 h steady-state cruising in the stratosphere.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Navigation
Journal of Navigation 工程技术-工程:海洋
CiteScore
6.10
自引率
4.20%
发文量
59
审稿时长
4.6 months
期刊介绍: The Journal of Navigation contains original papers on the science of navigation by man and animals over land and sea and through air and space, including a selection of papers presented at meetings of the Institute and other organisations associated with navigation. Papers cover every aspect of navigation, from the highly technical to the descriptive and historical. Subjects include electronics, astronomy, mathematics, cartography, command and control, psychology and zoology, operational research, risk analysis, theoretical physics, operation in hostile environments, instrumentation, ergonomics, financial planning and law. The journal also publishes selected papers and reports from the Institute’s special interest groups. Contributions come from all parts of the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信