{"title":"关于托雷利群的上同调","authors":"A. Kupers, O. Randal-Williams","doi":"10.1017/fmp.2020.5","DOIUrl":null,"url":null,"abstract":"We completely describe the algebraic part of the rational cohomology of the Torelli groups of the manifolds $\\#^{g}S^{n}\\times S^{n}$ relative to a disc in a stable range, for $2n\\geqslant 6$. Our calculation is also valid for $2n=2$ assuming that the rational cohomology groups of these Torelli groups are finite-dimensional in a stable range.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2019-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/fmp.2020.5","citationCount":"15","resultStr":"{\"title\":\"ON THE COHOMOLOGY OF TORELLI GROUPS\",\"authors\":\"A. Kupers, O. Randal-Williams\",\"doi\":\"10.1017/fmp.2020.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We completely describe the algebraic part of the rational cohomology of the Torelli groups of the manifolds $\\\\#^{g}S^{n}\\\\times S^{n}$ relative to a disc in a stable range, for $2n\\\\geqslant 6$. Our calculation is also valid for $2n=2$ assuming that the rational cohomology groups of these Torelli groups are finite-dimensional in a stable range.\",\"PeriodicalId\":56024,\"journal\":{\"name\":\"Forum of Mathematics Pi\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2019-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/fmp.2020.5\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Pi\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2020.5\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2020.5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We completely describe the algebraic part of the rational cohomology of the Torelli groups of the manifolds $\#^{g}S^{n}\times S^{n}$ relative to a disc in a stable range, for $2n\geqslant 6$. Our calculation is also valid for $2n=2$ assuming that the rational cohomology groups of these Torelli groups are finite-dimensional in a stable range.
期刊介绍:
Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.