绕水平轴旋转圆柱体上雾霾结冰相似性的实验研究

IF 0.9 Q4 ENGINEERING, MECHANICAL
Lei Shi, Yan Li, Wenfeng Guo, Ce Sun
{"title":"绕水平轴旋转圆柱体上雾霾结冰相似性的实验研究","authors":"Lei Shi, Yan Li, Wenfeng Guo, Ce Sun","doi":"10.1155/2021/9986733","DOIUrl":null,"url":null,"abstract":"Ice accumulation on the blade of a wind turbine surface seriously threatens the operational safety of the turbine; therefore, the research on this problem is very important. In this paper, a new similarity criterion of icing shape for a rotational model was proposed based on the similarity criterion for translational motion models in the aviation field, and experimental studies on the similarity of the rotational model icing were carried out. To validate the similarity criterion, icing wind tunnel tests were carried out with aluminum cylinders with diameters of 40 mm and 20 mm. Key parameters for the experiment, such as wind speed, temperature, liquid water content, medium volume diameter, and test time, were selected based on the criterion. All the icing tests were carried out in a new self-designed icing wind tunnel test system based on natural low-temperature conditions. The icing shapes observed in the tests were confirmed after many repetitions. To quantitatively analyze the similarity between different sizes of ice shapes, a dimensionless method for evaluating the similarity of ice shapes of different sizes was defined based on the typical characteristics of ice shapes. The research results show that the similarity score between two sizes of ice shapes under different test conditions is 81%~90%. The accuracy and applicability of the icing shape similarity criterion were thus validated. The research results in this paper lay a theoretical and experimental foundation for exploring the icing shape similarity of a rotating model.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Research on the Similarity of Rime Icing on a Cylinder Rotating around Its Horizontal Axis\",\"authors\":\"Lei Shi, Yan Li, Wenfeng Guo, Ce Sun\",\"doi\":\"10.1155/2021/9986733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ice accumulation on the blade of a wind turbine surface seriously threatens the operational safety of the turbine; therefore, the research on this problem is very important. In this paper, a new similarity criterion of icing shape for a rotational model was proposed based on the similarity criterion for translational motion models in the aviation field, and experimental studies on the similarity of the rotational model icing were carried out. To validate the similarity criterion, icing wind tunnel tests were carried out with aluminum cylinders with diameters of 40 mm and 20 mm. Key parameters for the experiment, such as wind speed, temperature, liquid water content, medium volume diameter, and test time, were selected based on the criterion. All the icing tests were carried out in a new self-designed icing wind tunnel test system based on natural low-temperature conditions. The icing shapes observed in the tests were confirmed after many repetitions. To quantitatively analyze the similarity between different sizes of ice shapes, a dimensionless method for evaluating the similarity of ice shapes of different sizes was defined based on the typical characteristics of ice shapes. The research results show that the similarity score between two sizes of ice shapes under different test conditions is 81%~90%. The accuracy and applicability of the icing shape similarity criterion were thus validated. The research results in this paper lay a theoretical and experimental foundation for exploring the icing shape similarity of a rotating model.\",\"PeriodicalId\":46335,\"journal\":{\"name\":\"International Journal of Rotating Machinery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Rotating Machinery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/9986733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rotating Machinery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/9986733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

风机叶片表面结冰严重威胁风机的运行安全;因此,对这一问题的研究具有十分重要的意义。本文在航空领域平移运动模型相似性准则的基础上,提出了一种新的旋转模型结冰形状相似性准则,并对旋转模型结冰的相似性进行了实验研究。为了验证相似性标准,对直径为40的铝制圆柱体进行了结冰风洞试验 mm和20 根据该标准选择了实验的关键参数,如风速、温度、液体含水量、介质体积直径和试验时间。所有的结冰试验都是在自行设计的基于自然低温条件的结冰风洞试验系统中进行的。试验中观察到的结冰形状经过多次重复后得到了证实。为了定量分析不同尺寸的冰形状之间的相似性,根据冰形状的典型特征,定义了一种无量纲方法来评估不同尺寸冰形状的相似性。研究结果表明,在不同测试条件下,两种尺寸的冰形状的相似性得分为81%~90%。从而验证了结冰形状相似性准则的准确性和适用性。本文的研究结果为探索旋转模型的结冰形状相似性奠定了理论和实验基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Research on the Similarity of Rime Icing on a Cylinder Rotating around Its Horizontal Axis
Ice accumulation on the blade of a wind turbine surface seriously threatens the operational safety of the turbine; therefore, the research on this problem is very important. In this paper, a new similarity criterion of icing shape for a rotational model was proposed based on the similarity criterion for translational motion models in the aviation field, and experimental studies on the similarity of the rotational model icing were carried out. To validate the similarity criterion, icing wind tunnel tests were carried out with aluminum cylinders with diameters of 40 mm and 20 mm. Key parameters for the experiment, such as wind speed, temperature, liquid water content, medium volume diameter, and test time, were selected based on the criterion. All the icing tests were carried out in a new self-designed icing wind tunnel test system based on natural low-temperature conditions. The icing shapes observed in the tests were confirmed after many repetitions. To quantitatively analyze the similarity between different sizes of ice shapes, a dimensionless method for evaluating the similarity of ice shapes of different sizes was defined based on the typical characteristics of ice shapes. The research results show that the similarity score between two sizes of ice shapes under different test conditions is 81%~90%. The accuracy and applicability of the icing shape similarity criterion were thus validated. The research results in this paper lay a theoretical and experimental foundation for exploring the icing shape similarity of a rotating model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
10
审稿时长
25 weeks
期刊介绍: This comprehensive journal provides the latest information on rotating machines and machine elements. This technology has become essential to many industrial processes, including gas-, steam-, water-, or wind-driven turbines at power generation systems, and in food processing, automobile and airplane engines, heating, refrigeration, air conditioning, and chemical or petroleum refining. In spite of the importance of rotating machinery and the huge financial resources involved in the industry, only a few publications distribute research and development information on the prime movers. This journal is the first source to combine the technology, as it applies to all of these specialties, previously scattered throughout literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信