“通过拟非扩张情形逼近半压缩映射的不动点”

IF 1.4 4区 数学 Q1 MATHEMATICS
V. Berinde
{"title":"“通过拟非扩张情形逼近半压缩映射的不动点”","authors":"V. Berinde","doi":"10.37193/cjm.2023.01.04","DOIUrl":null,"url":null,"abstract":"\"We prove that the convergence theorems for Mann iteration used for approximation of the fixed points of demicontractive mappings in Hilbert spaces can be derived from the corresponding convergence theorems in the class of quasi-nonexpansive mappings. Our derivation is based on an important auxiliary lemma (Lemma \\ref{lem3}), which shows that if $T$ is $k$-demicontractive, then for any $\\lambda\\in (0,1-k)$, $T_{\\lambda}$ is quasi-nonexpansive. In this way we obtain a unifying technique of proof for various well known results in the fixed point theory of demicontractive mappings. We illustrate this reduction technique for the case of two classical convergence results in the class of demicontractive mappings: [M\\u aru\\c ster, \\c St. The solution by iteration of nonlinear equations in Hilbert spaces. {\\em Proc. Amer. Math. Soc.} {\\bf 63} (1977), no. 1, 69--73] and [Hicks, T. L.; Kubicek, J. D. On the Mann iteration process in a Hilbert space. {\\em J. Math. Anal. Appl.} {\\bf 59} (1977), no. 3, 498--504].\"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"\\\"Approximating fixed points of demicontractive mappings via the quasi-nonexpansive case\\\"\",\"authors\":\"V. Berinde\",\"doi\":\"10.37193/cjm.2023.01.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"We prove that the convergence theorems for Mann iteration used for approximation of the fixed points of demicontractive mappings in Hilbert spaces can be derived from the corresponding convergence theorems in the class of quasi-nonexpansive mappings. Our derivation is based on an important auxiliary lemma (Lemma \\\\ref{lem3}), which shows that if $T$ is $k$-demicontractive, then for any $\\\\lambda\\\\in (0,1-k)$, $T_{\\\\lambda}$ is quasi-nonexpansive. In this way we obtain a unifying technique of proof for various well known results in the fixed point theory of demicontractive mappings. We illustrate this reduction technique for the case of two classical convergence results in the class of demicontractive mappings: [M\\\\u aru\\\\c ster, \\\\c St. The solution by iteration of nonlinear equations in Hilbert spaces. {\\\\em Proc. Amer. Math. Soc.} {\\\\bf 63} (1977), no. 1, 69--73] and [Hicks, T. L.; Kubicek, J. D. On the Mann iteration process in a Hilbert space. {\\\\em J. Math. Anal. Appl.} {\\\\bf 59} (1977), no. 3, 498--504].\\\"\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2023.01.04\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2023.01.04","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

“我们证明了Hilbert空间中用于逼近半压缩映射不动点的Mann迭代的收敛定理可以从拟非扩张映射类中相应的收敛定理中导出。我们的推导是基于一个重要的辅助引理(lemma\ref{lem3}),表明如果$T$是$k$-半收缩的,那么对于(0,1-k)$中的任何$\lambda,$T_{\lambda}$都是拟非扩张的。用这种方法,我们得到了半压缩映射不动点理论中各种已知结果的统一证明技术。我们在半压缩映射类中的两个经典收敛结果的情况下说明了这种约简技术:[M\u aru \c ster,\c St.Hilbert空间中非线性方程的迭代解。}{\bf 59}(1977),第3号,498-504〕。“
本文章由计算机程序翻译,如有差异,请以英文原文为准。
"Approximating fixed points of demicontractive mappings via the quasi-nonexpansive case"
"We prove that the convergence theorems for Mann iteration used for approximation of the fixed points of demicontractive mappings in Hilbert spaces can be derived from the corresponding convergence theorems in the class of quasi-nonexpansive mappings. Our derivation is based on an important auxiliary lemma (Lemma \ref{lem3}), which shows that if $T$ is $k$-demicontractive, then for any $\lambda\in (0,1-k)$, $T_{\lambda}$ is quasi-nonexpansive. In this way we obtain a unifying technique of proof for various well known results in the fixed point theory of demicontractive mappings. We illustrate this reduction technique for the case of two classical convergence results in the class of demicontractive mappings: [M\u aru\c ster, \c St. The solution by iteration of nonlinear equations in Hilbert spaces. {\em Proc. Amer. Math. Soc.} {\bf 63} (1977), no. 1, 69--73] and [Hicks, T. L.; Kubicek, J. D. On the Mann iteration process in a Hilbert space. {\em J. Math. Anal. Appl.} {\bf 59} (1977), no. 3, 498--504]."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信