{"title":"二参数量化包络代数Ur,s(sl2)\\documentclass[12pt]{minimal}\\usepackage{amsmath}\\usepackage{wasysym}\\ usepackage{{amsfonts}\\usecpackage{amssymb}\\ucepackage{amsbsy}\\usepackage{mathrsfs}\\usecpacket{upgek}\\setlength的有限维单模的湮灭理想{","authors":"Yu Wang, Xiao-Meng Li","doi":"10.21136/CMJ.2023.0193-22","DOIUrl":null,"url":null,"abstract":"Let U be the two-parameter quantized enveloping algebra Ur,s(sl2)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${U_{r,s}}({\\mathfrak{s}\\mathfrak{l}_2})$$\\end{document} and F(U) the locally finite subalgebra of U under the adjoint action. The aim of this paper is to determine some ring-theoretical properties of F(U) in the case when rs−1 is not a root of unity. Then we describe the annihilator ideals of finite dimensional simple modules of U by generators.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra Ur,s(sl2)\\\\documentclass[12pt]{minimal} \\\\usepackage{amsmath} \\\\usepackage{wasysym} \\\\usepackage{amsfonts} \\\\usepackage{amssymb} \\\\usepackage{amsbsy} \\\\usepackage{mathrsfs} \\\\usepackage{upgreek} \\\\setlength{\",\"authors\":\"Yu Wang, Xiao-Meng Li\",\"doi\":\"10.21136/CMJ.2023.0193-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let U be the two-parameter quantized enveloping algebra Ur,s(sl2)\\\\documentclass[12pt]{minimal} \\\\usepackage{amsmath} \\\\usepackage{wasysym} \\\\usepackage{amsfonts} \\\\usepackage{amssymb} \\\\usepackage{amsbsy} \\\\usepackage{mathrsfs} \\\\usepackage{upgreek} \\\\setlength{\\\\oddsidemargin}{-69pt} \\\\begin{document}$${U_{r,s}}({\\\\mathfrak{s}\\\\mathfrak{l}_2})$$\\\\end{document} and F(U) the locally finite subalgebra of U under the adjoint action. The aim of this paper is to determine some ring-theoretical properties of F(U) in the case when rs−1 is not a root of unity. Then we describe the annihilator ideals of finite dimensional simple modules of U by generators.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/CMJ.2023.0193-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/CMJ.2023.0193-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let U be the two-parameter quantized enveloping algebra Ur,s(sl2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${U_{r,s}}({\mathfrak{s}\mathfrak{l}_2})$$\end{document} and F(U) the locally finite subalgebra of U under the adjoint action. The aim of this paper is to determine some ring-theoretical properties of F(U) in the case when rs−1 is not a root of unity. Then we describe the annihilator ideals of finite dimensional simple modules of U by generators.