Ali Ahmad Aghapour, Nazila Alizadeh, Hassan Khorsandi
{"title":"垂直轴向旋转生物床(SBR- varb)对四环素类抗生素的生物降解和矿化","authors":"Ali Ahmad Aghapour, Nazila Alizadeh, Hassan Khorsandi","doi":"10.1007/s10532-023-10018-5","DOIUrl":null,"url":null,"abstract":"<div><p>Tetracycline (TC) is a widely used antibiotic with a complex aromatic chemical structure and is highly resistant to biodegradation. In this study, an SBR equipped with a vertical axially rotating biological bed (SBR-VARB) was used for the biodegradation and mineralization of TC. SBR-VARB showed high efficiency in removing TC (97%), total phenolic compounds (TP) (95%), and COD (85%) under optimal operating conditions (TC = 50 mg/L, HRT = 1.75 d, and OLR = 36 g COD/m<sup>3</sup> d). The SBR-VARB was able to treat higher concentrations of TC in shorter HRT than reported in previous studies. The contribution of VARB to improve SBR efficiency in removing TC, TP, and COD was 16, 36, and 48%, respectively. Intermediate compounds formed during the biodegradation of TC were identified using GC–MS under the optimal operating conditions of the bioreactor. These are mainly organic compounds with linear chemical structures. Based on the complete biodegradation of TC under the optimal operating conditions of the bioreactor, 93% and 36% of the chlorine and nitrogen atoms in the chemical structure of TC appeared in the wastewater, respectively. According to the sequence analysis of 16SrDNA, <i>Pseudomonas</i> sp., <i>Kocuria Polaris</i>, and <i>Staphylococcus</i> sp. were identified in the biofilm of VARB and the suspended biomass of the bioreactor. Therefore, SBR-VARB showed high efficiency in the biodegradation and mineralization of TC and can be used as a suitable option for treating wastewater containing antibiotics and other toxic compounds.\n</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 4","pages":"325 - 340"},"PeriodicalIF":3.1000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10532-023-10018-5.pdf","citationCount":"1","resultStr":"{\"title\":\"Biological degradation and mineralization of tetracycline antibiotic using SBR equipped with a vertical axially rotating biological bed (SBR-VARB)\",\"authors\":\"Ali Ahmad Aghapour, Nazila Alizadeh, Hassan Khorsandi\",\"doi\":\"10.1007/s10532-023-10018-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tetracycline (TC) is a widely used antibiotic with a complex aromatic chemical structure and is highly resistant to biodegradation. In this study, an SBR equipped with a vertical axially rotating biological bed (SBR-VARB) was used for the biodegradation and mineralization of TC. SBR-VARB showed high efficiency in removing TC (97%), total phenolic compounds (TP) (95%), and COD (85%) under optimal operating conditions (TC = 50 mg/L, HRT = 1.75 d, and OLR = 36 g COD/m<sup>3</sup> d). The SBR-VARB was able to treat higher concentrations of TC in shorter HRT than reported in previous studies. The contribution of VARB to improve SBR efficiency in removing TC, TP, and COD was 16, 36, and 48%, respectively. Intermediate compounds formed during the biodegradation of TC were identified using GC–MS under the optimal operating conditions of the bioreactor. These are mainly organic compounds with linear chemical structures. Based on the complete biodegradation of TC under the optimal operating conditions of the bioreactor, 93% and 36% of the chlorine and nitrogen atoms in the chemical structure of TC appeared in the wastewater, respectively. According to the sequence analysis of 16SrDNA, <i>Pseudomonas</i> sp., <i>Kocuria Polaris</i>, and <i>Staphylococcus</i> sp. were identified in the biofilm of VARB and the suspended biomass of the bioreactor. Therefore, SBR-VARB showed high efficiency in the biodegradation and mineralization of TC and can be used as a suitable option for treating wastewater containing antibiotics and other toxic compounds.\\n</p></div>\",\"PeriodicalId\":486,\"journal\":{\"name\":\"Biodegradation\",\"volume\":\"34 4\",\"pages\":\"325 - 340\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10532-023-10018-5.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodegradation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10532-023-10018-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-023-10018-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Biological degradation and mineralization of tetracycline antibiotic using SBR equipped with a vertical axially rotating biological bed (SBR-VARB)
Tetracycline (TC) is a widely used antibiotic with a complex aromatic chemical structure and is highly resistant to biodegradation. In this study, an SBR equipped with a vertical axially rotating biological bed (SBR-VARB) was used for the biodegradation and mineralization of TC. SBR-VARB showed high efficiency in removing TC (97%), total phenolic compounds (TP) (95%), and COD (85%) under optimal operating conditions (TC = 50 mg/L, HRT = 1.75 d, and OLR = 36 g COD/m3 d). The SBR-VARB was able to treat higher concentrations of TC in shorter HRT than reported in previous studies. The contribution of VARB to improve SBR efficiency in removing TC, TP, and COD was 16, 36, and 48%, respectively. Intermediate compounds formed during the biodegradation of TC were identified using GC–MS under the optimal operating conditions of the bioreactor. These are mainly organic compounds with linear chemical structures. Based on the complete biodegradation of TC under the optimal operating conditions of the bioreactor, 93% and 36% of the chlorine and nitrogen atoms in the chemical structure of TC appeared in the wastewater, respectively. According to the sequence analysis of 16SrDNA, Pseudomonas sp., Kocuria Polaris, and Staphylococcus sp. were identified in the biofilm of VARB and the suspended biomass of the bioreactor. Therefore, SBR-VARB showed high efficiency in the biodegradation and mineralization of TC and can be used as a suitable option for treating wastewater containing antibiotics and other toxic compounds.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.