正方形和其他平面域的Courant sharp-Robin特征值

IF 0.5 4区 数学 Q3 MATHEMATICS
K. Gittins, B. Helffer
{"title":"正方形和其他平面域的Courant sharp-Robin特征值","authors":"K. Gittins, B. Helffer","doi":"10.4171/pm/2027","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the determination of the cases where there is equality in Courant's nodal domain theorem in the case of a Robin boundary condition. For the square, we partially extend the results that were obtained by Pleijel, B\\'erard--Helffer, Helffer--Persson--Sundqvist for the Dirichlet and Neumann problems. \nAfter proving some general results that hold for any value of the Robin parameter $h$, we focus on the case when $h$ is large. We hope to come back to the analysis when $h$ is small in a second paper. \nWe also obtain some semi-stability results for the number of nodal domains of a Robin eigenfunction of a domain with $C^{2,\\alpha}$ boundary ($\\alpha >0$) as $h$ large varies.","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/pm/2027","citationCount":"7","resultStr":"{\"title\":\"Courant-sharp Robin eigenvalues for the square and other planar domains\",\"authors\":\"K. Gittins, B. Helffer\",\"doi\":\"10.4171/pm/2027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the determination of the cases where there is equality in Courant's nodal domain theorem in the case of a Robin boundary condition. For the square, we partially extend the results that were obtained by Pleijel, B\\\\'erard--Helffer, Helffer--Persson--Sundqvist for the Dirichlet and Neumann problems. \\nAfter proving some general results that hold for any value of the Robin parameter $h$, we focus on the case when $h$ is large. We hope to come back to the analysis when $h$ is small in a second paper. \\nWe also obtain some semi-stability results for the number of nodal domains of a Robin eigenfunction of a domain with $C^{2,\\\\alpha}$ boundary ($\\\\alpha >0$) as $h$ large varies.\",\"PeriodicalId\":51269,\"journal\":{\"name\":\"Portugaliae Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/pm/2027\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Portugaliae Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/pm/2027\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/pm/2027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

本文致力于在Robin边界条件的情况下,确定Courant节点域定理中存在等式的情况。对于平方,我们部分推广了Pleijel,B\'erard-Helffer,Helffer-Persson-Sundqvist对Dirichlet和Neumann问题的结果。在证明了Robin参数$h$的任何值都适用的一些一般结果之后,我们将重点关注$h$较大的情况。我们希望在第二篇论文中,当$h$很小时,能回到分析上来。当$h$大变化时,我们还得到了具有$C^{2,\alpha}$边界($\alpha>0$)的域的Robin本征函数的节点域数的一些半稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Courant-sharp Robin eigenvalues for the square and other planar domains
This paper is devoted to the determination of the cases where there is equality in Courant's nodal domain theorem in the case of a Robin boundary condition. For the square, we partially extend the results that were obtained by Pleijel, B\'erard--Helffer, Helffer--Persson--Sundqvist for the Dirichlet and Neumann problems. After proving some general results that hold for any value of the Robin parameter $h$, we focus on the case when $h$ is large. We hope to come back to the analysis when $h$ is small in a second paper. We also obtain some semi-stability results for the number of nodal domains of a Robin eigenfunction of a domain with $C^{2,\alpha}$ boundary ($\alpha >0$) as $h$ large varies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Portugaliae Mathematica
Portugaliae Mathematica MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: Since its foundation in 1937, Portugaliae Mathematica has aimed at publishing high-level research articles in all branches of mathematics. With great efforts by its founders, the journal was able to publish articles by some of the best mathematicians of the time. In 2001 a New Series of Portugaliae Mathematica was started, reaffirming the purpose of maintaining a high-level research journal in mathematics with a wide range scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信