{"title":"三维随机三次Ginzburg–Landau系统不变测度的稳定性","authors":"Dengdi Chen, Yan Zheng","doi":"10.1080/14689367.2022.2083485","DOIUrl":null,"url":null,"abstract":"The current paper is devoted to 3D stochastic Ginzburg–Landau equations with degenerate random forcing. We establish the stability of stochastic systems by investigating the relationship between invariant measures under the action of transition semigroups corresponding to different sets of parameters. Towards this aim a new form of bound on the difference between solutions along with the spectral gap plays a significant role.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"37 1","pages":"554 - 563"},"PeriodicalIF":0.5000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of the invariant measure for the 3D stochastic cubic Ginzburg–Landau systems\",\"authors\":\"Dengdi Chen, Yan Zheng\",\"doi\":\"10.1080/14689367.2022.2083485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current paper is devoted to 3D stochastic Ginzburg–Landau equations with degenerate random forcing. We establish the stability of stochastic systems by investigating the relationship between invariant measures under the action of transition semigroups corresponding to different sets of parameters. Towards this aim a new form of bound on the difference between solutions along with the spectral gap plays a significant role.\",\"PeriodicalId\":50564,\"journal\":{\"name\":\"Dynamical Systems-An International Journal\",\"volume\":\"37 1\",\"pages\":\"554 - 563\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamical Systems-An International Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2022.2083485\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2083485","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Stability of the invariant measure for the 3D stochastic cubic Ginzburg–Landau systems
The current paper is devoted to 3D stochastic Ginzburg–Landau equations with degenerate random forcing. We establish the stability of stochastic systems by investigating the relationship between invariant measures under the action of transition semigroups corresponding to different sets of parameters. Towards this aim a new form of bound on the difference between solutions along with the spectral gap plays a significant role.
期刊介绍:
Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal:
•Differential equations
•Bifurcation theory
•Hamiltonian and Lagrangian dynamics
•Hyperbolic dynamics
•Ergodic theory
•Topological and smooth dynamics
•Random dynamical systems
•Applications in technology, engineering and natural and life sciences