细胞色素P2C9*3等位基因的遗传异常易患癫痫和苯妥英钠诱导的药物不良反应:北印度人群细胞色素等位基因分型结果

IF 3.4 Q2 PHARMACOLOGY & PHARMACY
Vivek Kumar Garg,  Supriya, Ritu Shree, Ajay Prakash, Aastha Takkar, Madhu Khullar, Biman Saikia, Bikash Medhi, Manish Modi
{"title":"细胞色素P2C9*3等位基因的遗传异常易患癫痫和苯妥英钠诱导的药物不良反应:北印度人群细胞色素等位基因分型结果","authors":"Vivek Kumar Garg,&nbsp; Supriya,&nbsp;Ritu Shree,&nbsp;Ajay Prakash,&nbsp;Aastha Takkar,&nbsp;Madhu Khullar,&nbsp;Biman Saikia,&nbsp;Bikash Medhi,&nbsp;Manish Modi","doi":"10.1186/s43094-022-00432-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>This research aims to study the association of genetic polymorphism in genes coding for CYP2C9 and CYP2C19 in phenytoin-induced dose-related toxicity and to assess if the presence of allele CYP2C9*3 plays a role in phenytoin-induced idiosyncratic adverse effects. Current observational case control study included 142 patients with phenytoin-induced adverse drug reactions (ADRs) and 100 controls. All these patients underwent genotyping to determine the type of CYP2C9 allele [CYP2C9*1, CYP2C9*2 or CYP2C9*3) and CYP2C19 allele (CYP2C19*1, CYP2C19*2 or CYP2C19*3] by real-time polymerase chain reaction (RT-PCR) using Applied Biosystems (ABI) 7500 Real-Time PCR System (USA).\n</p><h3>Results</h3><p>Presence of homozygous status for allele CYP2C9*3 was associated with significantly higher risk of phenytoin-induced dose-dependent ADRs, dose-independent ADRs, gum hyperplasia, and skin rash. Presence of heterozygous status for allele CYP2C9*3 was associated with significantly higher risk of phyenytoin-induced dose-dependent ADRs and dose-independent ADRs. Presence of either heterozygous or homozygous status for CYP2C9*2 and CYP2C19*2 did not have any bearing on dose-related side effects. None of the patients showed CYP2C19*3 allele.\n</p><h3>Conclusion</h3><p>Variant alleles of CYP2C9*3 are significantly overexpressed among patients with phenytoin-induced ADRs, thereby suggesting the role for CYP2C9 genotype testing to predict risk of phenytoin-related ADRs.</p></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":"8 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-022-00432-6","citationCount":"2","resultStr":"{\"title\":\"Genetic abnormality of cytochrome-P2C9*3 allele predisposes to epilepsy and phenytoin-induced adverse drug reactions: genotyping findings of cytochrome-alleles in the North Indian population\",\"authors\":\"Vivek Kumar Garg,&nbsp; Supriya,&nbsp;Ritu Shree,&nbsp;Ajay Prakash,&nbsp;Aastha Takkar,&nbsp;Madhu Khullar,&nbsp;Biman Saikia,&nbsp;Bikash Medhi,&nbsp;Manish Modi\",\"doi\":\"10.1186/s43094-022-00432-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>This research aims to study the association of genetic polymorphism in genes coding for CYP2C9 and CYP2C19 in phenytoin-induced dose-related toxicity and to assess if the presence of allele CYP2C9*3 plays a role in phenytoin-induced idiosyncratic adverse effects. Current observational case control study included 142 patients with phenytoin-induced adverse drug reactions (ADRs) and 100 controls. All these patients underwent genotyping to determine the type of CYP2C9 allele [CYP2C9*1, CYP2C9*2 or CYP2C9*3) and CYP2C19 allele (CYP2C19*1, CYP2C19*2 or CYP2C19*3] by real-time polymerase chain reaction (RT-PCR) using Applied Biosystems (ABI) 7500 Real-Time PCR System (USA).\\n</p><h3>Results</h3><p>Presence of homozygous status for allele CYP2C9*3 was associated with significantly higher risk of phenytoin-induced dose-dependent ADRs, dose-independent ADRs, gum hyperplasia, and skin rash. Presence of heterozygous status for allele CYP2C9*3 was associated with significantly higher risk of phyenytoin-induced dose-dependent ADRs and dose-independent ADRs. Presence of either heterozygous or homozygous status for CYP2C9*2 and CYP2C19*2 did not have any bearing on dose-related side effects. None of the patients showed CYP2C19*3 allele.\\n</p><h3>Conclusion</h3><p>Variant alleles of CYP2C9*3 are significantly overexpressed among patients with phenytoin-induced ADRs, thereby suggesting the role for CYP2C9 genotype testing to predict risk of phenytoin-related ADRs.</p></div>\",\"PeriodicalId\":577,\"journal\":{\"name\":\"Future Journal of Pharmaceutical Sciences\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-022-00432-6\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s43094-022-00432-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43094-022-00432-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 2

摘要

本研究旨在研究CYP2C9和CYP2C19基因编码基因多态性与苯妥英诱导的剂量相关毒性的关系,并评估等位基因CYP2C9*3的存在是否在苯妥英诱导的特异性不良反应中起作用。目前的观察性病例对照研究包括142例苯妥英引起的药物不良反应(adr)患者和100例对照。所有患者均采用美国Applied Biosystems (ABI) 7500 real-time PCR系统,采用实时聚合酶链反应(RT-PCR)对CYP2C9等位基因[CYP2C9*1、CYP2C9*2或CYP2C9*3]和CYP2C19等位基因(CYP2C19*1、CYP2C19*2或CYP2C19*3]进行基因分型。结果CYP2C9*3等位基因的纯合子状态与苯妥英引起的剂量依赖性不良反应、剂量非依赖性不良反应、牙龈增生和皮疹的风险显著升高相关。等位基因CYP2C9*3的杂合状态与phenytoin诱导的剂量依赖性和剂量非依赖性adr的风险显著升高相关。CYP2C9*2和CYP2C19*2的杂合或纯合状态与剂量相关的副作用没有任何关系。无CYP2C19*3等位基因。结论CYP2C9*3变异等位基因在苯妥英相关不良反应患者中显著过表达,提示CYP2C9基因型检测可预测苯妥英相关不良反应的发生风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic abnormality of cytochrome-P2C9*3 allele predisposes to epilepsy and phenytoin-induced adverse drug reactions: genotyping findings of cytochrome-alleles in the North Indian population

Background

This research aims to study the association of genetic polymorphism in genes coding for CYP2C9 and CYP2C19 in phenytoin-induced dose-related toxicity and to assess if the presence of allele CYP2C9*3 plays a role in phenytoin-induced idiosyncratic adverse effects. Current observational case control study included 142 patients with phenytoin-induced adverse drug reactions (ADRs) and 100 controls. All these patients underwent genotyping to determine the type of CYP2C9 allele [CYP2C9*1, CYP2C9*2 or CYP2C9*3) and CYP2C19 allele (CYP2C19*1, CYP2C19*2 or CYP2C19*3] by real-time polymerase chain reaction (RT-PCR) using Applied Biosystems (ABI) 7500 Real-Time PCR System (USA).

Results

Presence of homozygous status for allele CYP2C9*3 was associated with significantly higher risk of phenytoin-induced dose-dependent ADRs, dose-independent ADRs, gum hyperplasia, and skin rash. Presence of heterozygous status for allele CYP2C9*3 was associated with significantly higher risk of phyenytoin-induced dose-dependent ADRs and dose-independent ADRs. Presence of either heterozygous or homozygous status for CYP2C9*2 and CYP2C19*2 did not have any bearing on dose-related side effects. None of the patients showed CYP2C19*3 allele.

Conclusion

Variant alleles of CYP2C9*3 are significantly overexpressed among patients with phenytoin-induced ADRs, thereby suggesting the role for CYP2C9 genotype testing to predict risk of phenytoin-related ADRs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
44
审稿时长
23 weeks
期刊介绍: Future Journal of Pharmaceutical Sciences (FJPS) is the official journal of the Future University in Egypt. It is a peer-reviewed, open access journal which publishes original research articles, review articles and case studies on all aspects of pharmaceutical sciences and technologies, pharmacy practice and related clinical aspects, and pharmacy education. The journal publishes articles covering developments in drug absorption and metabolism, pharmacokinetics and dynamics, drug delivery systems, drug targeting and nano-technology. It also covers development of new systems, methods and techniques in pharmacy education and practice. The scope of the journal also extends to cover advancements in toxicology, cell and molecular biology, biomedical research, clinical and pharmaceutical microbiology, pharmaceutical biotechnology, medicinal chemistry, phytochemistry and nutraceuticals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信