{"title":"柔性臂/缆索混合驱动并联连续体机械手的分析与验证","authors":"Yezheng Kang, Zhenkun Liang, Tianyi Yan, Xuyang Duan, Hao Wang, J. Seidelmann, Genliang Chen","doi":"10.1115/1.4063289","DOIUrl":null,"url":null,"abstract":"\n Cable-driven parallel manipulators and parallel continuum manipulators have attracted increasing attention in pick-and-place manipulation, owing to their low inertia and high safety. In cable-driven parallel robots, cables are utilized to control a moving platform, whereas parallel continuum manipulators employ flexible limbs.By combing these two types of mechanisms, the authors propose a novel flexible limb/cable hybrid-driven parallel continuum manipulator (HDPCM).The flexible limbs, equipped with their ability to withstand pushing forces applied on the moving platform, are a critical component of the HDPCM. Meanwhile, the cables, with their proficiency to modulate the shape of the flexible limbs and endure some of the pulling force, reduce the possibility of large divergence in flexible limbs. This results in an improved reachable workspace and load capacity for the manipulator. To predict the configuration of the proposed manipulator, an efficient kinetostaics analysis is given, utilizing a discretization-based approach. Among the infinitely many solutions to the inverse problem, the configuration with the minimal potential energy is selected as the optimal solution. Finally, a prototype is fabricated, and validation experiments are conducted, which demonstrate that the prototype exhibits acceptable positioning accuracy and passive compliance. Furthermore, the proposed manipulator is validated to possess relatively superior performance in workspace and load capacity.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and Validation of a Flexible Limb/Cable Hybrid-Driven Parallel Continuum Manipulator\",\"authors\":\"Yezheng Kang, Zhenkun Liang, Tianyi Yan, Xuyang Duan, Hao Wang, J. Seidelmann, Genliang Chen\",\"doi\":\"10.1115/1.4063289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Cable-driven parallel manipulators and parallel continuum manipulators have attracted increasing attention in pick-and-place manipulation, owing to their low inertia and high safety. In cable-driven parallel robots, cables are utilized to control a moving platform, whereas parallel continuum manipulators employ flexible limbs.By combing these two types of mechanisms, the authors propose a novel flexible limb/cable hybrid-driven parallel continuum manipulator (HDPCM).The flexible limbs, equipped with their ability to withstand pushing forces applied on the moving platform, are a critical component of the HDPCM. Meanwhile, the cables, with their proficiency to modulate the shape of the flexible limbs and endure some of the pulling force, reduce the possibility of large divergence in flexible limbs. This results in an improved reachable workspace and load capacity for the manipulator. To predict the configuration of the proposed manipulator, an efficient kinetostaics analysis is given, utilizing a discretization-based approach. Among the infinitely many solutions to the inverse problem, the configuration with the minimal potential energy is selected as the optimal solution. Finally, a prototype is fabricated, and validation experiments are conducted, which demonstrate that the prototype exhibits acceptable positioning accuracy and passive compliance. Furthermore, the proposed manipulator is validated to possess relatively superior performance in workspace and load capacity.\",\"PeriodicalId\":49155,\"journal\":{\"name\":\"Journal of Mechanisms and Robotics-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanisms and Robotics-Transactions of the Asme\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063289\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4063289","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Analysis and Validation of a Flexible Limb/Cable Hybrid-Driven Parallel Continuum Manipulator
Cable-driven parallel manipulators and parallel continuum manipulators have attracted increasing attention in pick-and-place manipulation, owing to their low inertia and high safety. In cable-driven parallel robots, cables are utilized to control a moving platform, whereas parallel continuum manipulators employ flexible limbs.By combing these two types of mechanisms, the authors propose a novel flexible limb/cable hybrid-driven parallel continuum manipulator (HDPCM).The flexible limbs, equipped with their ability to withstand pushing forces applied on the moving platform, are a critical component of the HDPCM. Meanwhile, the cables, with their proficiency to modulate the shape of the flexible limbs and endure some of the pulling force, reduce the possibility of large divergence in flexible limbs. This results in an improved reachable workspace and load capacity for the manipulator. To predict the configuration of the proposed manipulator, an efficient kinetostaics analysis is given, utilizing a discretization-based approach. Among the infinitely many solutions to the inverse problem, the configuration with the minimal potential energy is selected as the optimal solution. Finally, a prototype is fabricated, and validation experiments are conducted, which demonstrate that the prototype exhibits acceptable positioning accuracy and passive compliance. Furthermore, the proposed manipulator is validated to possess relatively superior performance in workspace and load capacity.
期刊介绍:
Fundamental theory, algorithms, design, manufacture, and experimental validation for mechanisms and robots; Theoretical and applied kinematics; Mechanism synthesis and design; Analysis and design of robot manipulators, hands and legs, soft robotics, compliant mechanisms, origami and folded robots, printed robots, and haptic devices; Novel fabrication; Actuation and control techniques for mechanisms and robotics; Bio-inspired approaches to mechanism and robot design; Mechanics and design of micro- and nano-scale devices.