热气球稳态垂直飞行性能的数学模型

IF 0.8 Q3 ENGINEERING, AEROSPACE
N. Daidzic
{"title":"热气球稳态垂直飞行性能的数学模型","authors":"N. Daidzic","doi":"10.3846/aviation.2021.15330","DOIUrl":null,"url":null,"abstract":"Vertical flight performance of Lighter-than-Air free hot-air balloons is derived and discussed. Novel mathematical model using lumped-parameters has been used to model balloon flight dynamics and steady-state performance in particular. Thermal model was not treated as the super-heat is under the control of aeronauts/pilots. Buoyancy or gross lift, net or effective lift, specific lift, and excess specific lift were derived for a general single envelope balloon and can be applied to hot-air, gas and hybrid balloons. Rate-of-climb, absolute ceiling, rate-of-descent, and the maximum rate-of-descent or the uncontrolled terminal descent have all been modeled and sample computations performed for AX8 or AX9 FAI-class hot-air balloons. Lifting index or the specific net/effective lift have been computed treating ambient and hot air as ideal gases at various pressure altitudes and representative envelope temperatures. Drag coefficient in upward and downward vertical flights have been chosen based on best available data. Experimental scale and full-scale flight tests are suggested for more accurate estimates of external aerodynamics in vertical balloon flights. CFD computations of coupled inner- and external-flows are also recommended in future efforts. Knowledge of free balloon’s vertical performance is essential in flight planning and operational safety of flight.","PeriodicalId":51910,"journal":{"name":"Aviation","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MATHEMATICAL MODEL OF HOT-AIR BALLOON STEADY-STATE VERTICAL FLIGHT PERFORMANCE\",\"authors\":\"N. Daidzic\",\"doi\":\"10.3846/aviation.2021.15330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vertical flight performance of Lighter-than-Air free hot-air balloons is derived and discussed. Novel mathematical model using lumped-parameters has been used to model balloon flight dynamics and steady-state performance in particular. Thermal model was not treated as the super-heat is under the control of aeronauts/pilots. Buoyancy or gross lift, net or effective lift, specific lift, and excess specific lift were derived for a general single envelope balloon and can be applied to hot-air, gas and hybrid balloons. Rate-of-climb, absolute ceiling, rate-of-descent, and the maximum rate-of-descent or the uncontrolled terminal descent have all been modeled and sample computations performed for AX8 or AX9 FAI-class hot-air balloons. Lifting index or the specific net/effective lift have been computed treating ambient and hot air as ideal gases at various pressure altitudes and representative envelope temperatures. Drag coefficient in upward and downward vertical flights have been chosen based on best available data. Experimental scale and full-scale flight tests are suggested for more accurate estimates of external aerodynamics in vertical balloon flights. CFD computations of coupled inner- and external-flows are also recommended in future efforts. Knowledge of free balloon’s vertical performance is essential in flight planning and operational safety of flight.\",\"PeriodicalId\":51910,\"journal\":{\"name\":\"Aviation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aviation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3846/aviation.2021.15330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aviation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/aviation.2021.15330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 3

摘要

推导并讨论了轻于空气的自由热气球的垂直飞行性能。使用集总参数的新型数学模型已被用于模拟气球飞行动力学,尤其是稳态性能。热模型没有被处理,因为过热是在宇航员/飞行员的控制之下。浮力或总升力、净升力或有效升力、比升力和超额比升力是为普通单包层气球推导的,可应用于热气球、气体气球和混合气球。已经对AX8或AX9 FAI级热气球的爬升率、绝对天花板、下降率和最大下降率或不受控制的终端下降率进行了建模和样本计算。已经计算了升力指数或特定净/有效升力,将环境空气和热空气视为不同压力高度和代表性包络温度下的理想气体。垂直向上和向下飞行的阻力系数是根据最佳可用数据选择的。为了更准确地估计垂直气球飞行中的外部空气动力学,建议进行实验规模和全尺寸飞行测试。在未来的工作中,还建议对内外耦合流动进行CFD计算。了解自由气球的垂直性能对飞行计划和飞行操作安全至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MATHEMATICAL MODEL OF HOT-AIR BALLOON STEADY-STATE VERTICAL FLIGHT PERFORMANCE
Vertical flight performance of Lighter-than-Air free hot-air balloons is derived and discussed. Novel mathematical model using lumped-parameters has been used to model balloon flight dynamics and steady-state performance in particular. Thermal model was not treated as the super-heat is under the control of aeronauts/pilots. Buoyancy or gross lift, net or effective lift, specific lift, and excess specific lift were derived for a general single envelope balloon and can be applied to hot-air, gas and hybrid balloons. Rate-of-climb, absolute ceiling, rate-of-descent, and the maximum rate-of-descent or the uncontrolled terminal descent have all been modeled and sample computations performed for AX8 or AX9 FAI-class hot-air balloons. Lifting index or the specific net/effective lift have been computed treating ambient and hot air as ideal gases at various pressure altitudes and representative envelope temperatures. Drag coefficient in upward and downward vertical flights have been chosen based on best available data. Experimental scale and full-scale flight tests are suggested for more accurate estimates of external aerodynamics in vertical balloon flights. CFD computations of coupled inner- and external-flows are also recommended in future efforts. Knowledge of free balloon’s vertical performance is essential in flight planning and operational safety of flight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aviation
Aviation ENGINEERING, AEROSPACE-
CiteScore
2.40
自引率
10.00%
发文量
20
审稿时长
15 weeks
期刊介绍: CONCERNING THE FOLLOWING FIELDS OF RESEARCH: ▪ Flight Physics ▪ Air Traffic Management ▪ Aerostructures ▪ Airports ▪ Propulsion ▪ Human Factors ▪ Aircraft Avionics, Systems and Equipment ▪ Air Transport Technologies and Development ▪ Flight Mechanics ▪ History of Aviation ▪ Integrated Design and Validation (method and tools) Besides, it publishes: short reports and notes, reviews, reports about conferences and workshops
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信