核酸的光物理:生命出现的后果

IF 3.1 Q2 CHEMISTRY, MULTIDISCIPLINARY
Dr. Corinna L. Kufner, Dr. Dominik B. Bucher, Dr. Dimitar D. Sasselov
{"title":"核酸的光物理:生命出现的后果","authors":"Dr. Corinna L. Kufner,&nbsp;Dr. Dominik B. Bucher,&nbsp;Dr. Dimitar D. Sasselov","doi":"10.1002/syst.202200019","DOIUrl":null,"url":null,"abstract":"<p>Absorption of ultraviolet (UV) radiation can trigger a variety of photophysical and photochemical reactions in nucleic acids. In the prebiotic era, on the surface of the early Earth, UV light could have played a major role in the selection of the building blocks of life via a balance between synthetic and destructive pathways. As nucleic acid monomers assembled into polymers, their survival and facility for non-enzymatic replication hinged on their photostability and the ability for self-repair of lesions, e. g., by UV-induced charge transfer. Such photoprocesses are known to be sequence-dependent and could have led to an additional prebiotic selection of the genetic sequence pools available to the earliest life forms. This review summarizes the photophysical processes in nucleic acids upon the absorption of a UV photon and their implications for chemical and genetic selection at the emergence of life and the origin of translation.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202200019","citationCount":"2","resultStr":"{\"title\":\"The Photophysics of Nucleic Acids: Consequences for the Emergence of Life\",\"authors\":\"Dr. Corinna L. Kufner,&nbsp;Dr. Dominik B. Bucher,&nbsp;Dr. Dimitar D. Sasselov\",\"doi\":\"10.1002/syst.202200019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Absorption of ultraviolet (UV) radiation can trigger a variety of photophysical and photochemical reactions in nucleic acids. In the prebiotic era, on the surface of the early Earth, UV light could have played a major role in the selection of the building blocks of life via a balance between synthetic and destructive pathways. As nucleic acid monomers assembled into polymers, their survival and facility for non-enzymatic replication hinged on their photostability and the ability for self-repair of lesions, e. g., by UV-induced charge transfer. Such photoprocesses are known to be sequence-dependent and could have led to an additional prebiotic selection of the genetic sequence pools available to the earliest life forms. This review summarizes the photophysical processes in nucleic acids upon the absorption of a UV photon and their implications for chemical and genetic selection at the emergence of life and the origin of translation.</p>\",\"PeriodicalId\":72566,\"journal\":{\"name\":\"ChemSystemsChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202200019\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSystemsChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/syst.202200019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSystemsChem","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/syst.202200019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

对紫外辐射的吸收可以触发核酸中的各种光物理和光化学反应。在生命起源前的时代,在早期的地球表面,紫外线可能通过合成和破坏途径之间的平衡,在选择生命的基石方面发挥了重要作用。当核酸单体组装成聚合物时,它们的生存和非酶复制的能力取决于它们的光稳定性和损伤的自我修复能力。,通过紫外光诱导的电荷转移。众所周知,这种光过程是序列依赖的,并且可能导致对最早生命形式可用的基因序列池的额外的益生元选择。本文综述了核酸吸收紫外光子的光物理过程及其在生命出现和翻译起源时的化学和遗传选择的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Photophysics of Nucleic Acids: Consequences for the Emergence of Life

The Photophysics of Nucleic Acids: Consequences for the Emergence of Life

Absorption of ultraviolet (UV) radiation can trigger a variety of photophysical and photochemical reactions in nucleic acids. In the prebiotic era, on the surface of the early Earth, UV light could have played a major role in the selection of the building blocks of life via a balance between synthetic and destructive pathways. As nucleic acid monomers assembled into polymers, their survival and facility for non-enzymatic replication hinged on their photostability and the ability for self-repair of lesions, e. g., by UV-induced charge transfer. Such photoprocesses are known to be sequence-dependent and could have led to an additional prebiotic selection of the genetic sequence pools available to the earliest life forms. This review summarizes the photophysical processes in nucleic acids upon the absorption of a UV photon and their implications for chemical and genetic selection at the emergence of life and the origin of translation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信