杆面具有轴向磨损组织的往复杆密封系统的数值模拟模型

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Chong Xiang, Fei Guo, Xiaohong Jia, Yuming Wang
{"title":"杆面具有轴向磨损组织的往复杆密封系统的数值模拟模型","authors":"Chong Xiang,&nbsp;Fei Guo,&nbsp;Xiaohong Jia,&nbsp;Yuming Wang","doi":"10.1002/ls.1643","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a simulation model of reciprocating rod seal systems when there is axial texture on the rod surface due to wear is studied. The model includes macroscopic solid mechanics analysis, microscopic contact mechanics analysis and fluid mechanics analysis, and on this basis, the change of surface pressure when the sealing ring fall into a texture is calculated by the micro-deformation mechanics analysis of the seal surface. Then, the stiffness matrix method is used to find the film thickness when the three pressures in the sealing area are in equilibrium, completing the fluid–solid coupling calculation. Combined with the above simulation process, the performance parameters of the sealing system such as leakage and friction can be obtained. Results show that axial texture will degrade sealing performance, which increases leakage and friction. The simulation results can quantitative characterise the influence of rod wear on sealing performance and provide some theoretical basis for the study of seal failure mechanism and prediction of seal life.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical simulation model of reciprocating rod seal systems with axial wear texture on rod surface\",\"authors\":\"Chong Xiang,&nbsp;Fei Guo,&nbsp;Xiaohong Jia,&nbsp;Yuming Wang\",\"doi\":\"10.1002/ls.1643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, a simulation model of reciprocating rod seal systems when there is axial texture on the rod surface due to wear is studied. The model includes macroscopic solid mechanics analysis, microscopic contact mechanics analysis and fluid mechanics analysis, and on this basis, the change of surface pressure when the sealing ring fall into a texture is calculated by the micro-deformation mechanics analysis of the seal surface. Then, the stiffness matrix method is used to find the film thickness when the three pressures in the sealing area are in equilibrium, completing the fluid–solid coupling calculation. Combined with the above simulation process, the performance parameters of the sealing system such as leakage and friction can be obtained. Results show that axial texture will degrade sealing performance, which increases leakage and friction. The simulation results can quantitative characterise the influence of rod wear on sealing performance and provide some theoretical basis for the study of seal failure mechanism and prediction of seal life.</p>\",\"PeriodicalId\":18114,\"journal\":{\"name\":\"Lubrication Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubrication Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ls.1643\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1643","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了往复杆密封系统在杆面磨损产生轴向织构时的仿真模型。该模型包括宏观固体力学分析、微观接触力学分析和流体力学分析,在此基础上,通过密封表面的微观变形力学分析,计算出密封圈陷入织构时表面压力的变化。然后,使用刚度矩阵法求出密封区三个压力平衡时的膜厚度,完成了流固耦合计算。结合上述模拟过程,可以获得密封系统的泄漏和摩擦等性能参数。结果表明,轴向织构会降低密封性能,增加泄漏和摩擦。仿真结果可以定量表征杆磨损对密封性能的影响,为研究密封失效机理和预测密封寿命提供一定的理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation model of reciprocating rod seal systems with axial wear texture on rod surface

In this paper, a simulation model of reciprocating rod seal systems when there is axial texture on the rod surface due to wear is studied. The model includes macroscopic solid mechanics analysis, microscopic contact mechanics analysis and fluid mechanics analysis, and on this basis, the change of surface pressure when the sealing ring fall into a texture is calculated by the micro-deformation mechanics analysis of the seal surface. Then, the stiffness matrix method is used to find the film thickness when the three pressures in the sealing area are in equilibrium, completing the fluid–solid coupling calculation. Combined with the above simulation process, the performance parameters of the sealing system such as leakage and friction can be obtained. Results show that axial texture will degrade sealing performance, which increases leakage and friction. The simulation results can quantitative characterise the influence of rod wear on sealing performance and provide some theoretical basis for the study of seal failure mechanism and prediction of seal life.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubrication Science
Lubrication Science ENGINEERING, CHEMICAL-ENGINEERING, MECHANICAL
CiteScore
3.60
自引率
10.50%
发文量
61
审稿时长
6.8 months
期刊介绍: Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development. Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on: Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives. State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces. Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles. Gas lubrication. Extreme-conditions lubrication. Green-lubrication technology and lubricants. Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions. Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural. Modelling hydrodynamic and thin film lubrication. All lubrication related aspects of nanotribology. Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption. Bio-lubrication, bio-lubricants and lubricated biological systems. Other novel and cutting-edge aspects of lubrication in all lubrication regimes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信