铁驻极体:最新发展

IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xunlin Qiu, Yuqing Bian, Jiawen Liu, Yanxun Xiang, Taotao Ding, Wujun Zhu, Fu-Zhen Xuan
{"title":"铁驻极体:最新发展","authors":"Xunlin Qiu,&nbsp;Yuqing Bian,&nbsp;Jiawen Liu,&nbsp;Yanxun Xiang,&nbsp;Taotao Ding,&nbsp;Wujun Zhu,&nbsp;Fu-Zhen Xuan","doi":"10.1049/nde2.12036","DOIUrl":null,"url":null,"abstract":"<p>Ferroelectrets (also called piezoelectrets) are relatively young members in the family of piezo-, pyro- and ferroelectric materials. They exhibit <b>ferro</b>ic behaviour phenomenologically undistinguishable from that of traditional ferroelectrics, although the materials per se are essentially non-polar space-charge <b>electrets</b> with artificial macroscopic dipoles (i.e. internally charged cavities). Since ferroelectrets not only represent a scientific curiosity but also have great application potential, they have attracted tremendous attention from science and industry. The research and development of ferroelectrets has witnessed significant progress in the past few years. New ferroelectrets with large transverse piezoelectric activity, biodegradable ferroelectrets as well as 3-D printed ferroelectrets are reported. Charging methods of high efficiency are proposed based on better understanding of the physico-chemical processes during charging. New insights into the piezoelectricity of ferroelectrets are provided. The development of ferroelectret-based piezoelectric-magnetic multimodal transducer films opens up new avenues for the research of ferroelectrets. Particularly, more and more novel applications of ferroelectrets in flexible pressure sensors, health monitoring, energy harvesting, air-coupled ultrasonic non-destructive testing etc. are reported. Here, these exciting recent advancements in the field of ferroelectret research are reviewed and discussed.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"5 3-4","pages":"113-124"},"PeriodicalIF":3.8000,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12036","citationCount":"7","resultStr":"{\"title\":\"Ferroelectrets: Recent developments\",\"authors\":\"Xunlin Qiu,&nbsp;Yuqing Bian,&nbsp;Jiawen Liu,&nbsp;Yanxun Xiang,&nbsp;Taotao Ding,&nbsp;Wujun Zhu,&nbsp;Fu-Zhen Xuan\",\"doi\":\"10.1049/nde2.12036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ferroelectrets (also called piezoelectrets) are relatively young members in the family of piezo-, pyro- and ferroelectric materials. They exhibit <b>ferro</b>ic behaviour phenomenologically undistinguishable from that of traditional ferroelectrics, although the materials per se are essentially non-polar space-charge <b>electrets</b> with artificial macroscopic dipoles (i.e. internally charged cavities). Since ferroelectrets not only represent a scientific curiosity but also have great application potential, they have attracted tremendous attention from science and industry. The research and development of ferroelectrets has witnessed significant progress in the past few years. New ferroelectrets with large transverse piezoelectric activity, biodegradable ferroelectrets as well as 3-D printed ferroelectrets are reported. Charging methods of high efficiency are proposed based on better understanding of the physico-chemical processes during charging. New insights into the piezoelectricity of ferroelectrets are provided. The development of ferroelectret-based piezoelectric-magnetic multimodal transducer films opens up new avenues for the research of ferroelectrets. Particularly, more and more novel applications of ferroelectrets in flexible pressure sensors, health monitoring, energy harvesting, air-coupled ultrasonic non-destructive testing etc. are reported. Here, these exciting recent advancements in the field of ferroelectret research are reviewed and discussed.</p>\",\"PeriodicalId\":36855,\"journal\":{\"name\":\"IET Nanodielectrics\",\"volume\":\"5 3-4\",\"pages\":\"113-124\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12036\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Nanodielectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 7

摘要

铁电极体(也称为压电电极体)是压电、热电和铁电材料家族中相对年轻的成员。它们表现出与传统铁电体在现象上无法区分的铁电行为,尽管材料本身本质上是非极性空间电荷驻极体,具有人工宏观偶极子(即内部带电腔)。由于铁电极体不仅是一种科学珍品,而且具有巨大的应用潜力,因此引起了科学界和工业界的极大关注。近年来,铁电极体的研究和开发取得了重大进展。报道了具有大横向压电活性的新型铁驻极体、可生物降解铁驻极体以及3d打印铁驻极体。在深入了解充电过程的物理化学过程的基础上,提出了高效充电方法。提供了铁驻极体压电性的新见解。基于铁驻极体的压电多模态换能器薄膜的开发为铁驻极体的研究开辟了新的途径。特别是,铁驻极体在柔性压力传感器、健康监测、能量收集、空气耦合超声无损检测等方面的新应用越来越多。本文对铁电极体研究领域的最新进展进行了综述和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ferroelectrets: Recent developments

Ferroelectrets: Recent developments

Ferroelectrets (also called piezoelectrets) are relatively young members in the family of piezo-, pyro- and ferroelectric materials. They exhibit ferroic behaviour phenomenologically undistinguishable from that of traditional ferroelectrics, although the materials per se are essentially non-polar space-charge electrets with artificial macroscopic dipoles (i.e. internally charged cavities). Since ferroelectrets not only represent a scientific curiosity but also have great application potential, they have attracted tremendous attention from science and industry. The research and development of ferroelectrets has witnessed significant progress in the past few years. New ferroelectrets with large transverse piezoelectric activity, biodegradable ferroelectrets as well as 3-D printed ferroelectrets are reported. Charging methods of high efficiency are proposed based on better understanding of the physico-chemical processes during charging. New insights into the piezoelectricity of ferroelectrets are provided. The development of ferroelectret-based piezoelectric-magnetic multimodal transducer films opens up new avenues for the research of ferroelectrets. Particularly, more and more novel applications of ferroelectrets in flexible pressure sensors, health monitoring, energy harvesting, air-coupled ultrasonic non-destructive testing etc. are reported. Here, these exciting recent advancements in the field of ferroelectret research are reviewed and discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Nanodielectrics
IET Nanodielectrics Materials Science-Materials Chemistry
CiteScore
5.60
自引率
3.70%
发文量
7
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信