页岩裂缝在增产过程中的微地震性和渗透率演化研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Z. Ye, A. Ghassemi
{"title":"页岩裂缝在增产过程中的微地震性和渗透率演化研究","authors":"Z. Ye, A. Ghassemi","doi":"10.2118/201115-pa","DOIUrl":null,"url":null,"abstract":"\n Shear slip of pre-existing fractures can play a crucial role in hydraulic stimulation to enable production from unconventional shale reservoirs. Evidence of the phenomenon is found in microseismic/seismic events induced during stimulation by hydraulic fracturing. However, induced seismicity and permeability evolution in response to fracture shear slip by injection have not been extensively studied in laboratory tests under relevant conditions. In this work, a cylindrical Eagle Ford Shale sample having a single fracture (tensile fracture) was used to perform a laboratory injection test with concurrent acoustic emission (AE) monitoring. In the test, shear slip was induced on the fracture at near critical stress state by injecting pressurized brine water [7% potassium chloride (KCl)]. Sample deformation (stress, displacement), fluid flow (injection pressure, flow rate), and AE signals (hits, events) were all recorded. The data were then used to characterize the fully coupled seismo-hydromechanical response of the shale fracture during shearing. Results show that the induced AE/microseismic events correlate well with the fracture slip and the permeability evolution. Most of the recorded AE hits and events were detected during the seismic-slip interval corresponding to a rapid fracture slip and a large stress drop. As a result of dilatant shear slip, a remarkable enhancement of fracture permeability was achieved. Before this seismic interval, an aseismic-slip interval was evident during the tests, where the fracture slip, associated stress relaxation, and permeability increase were limited. The test results and analyses demonstrate the role of shear slip in permeability enhancement and induced seismicity by hydraulic stimulation for unconventional shale reservoirs.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2118/201115-pa","citationCount":"2","resultStr":"{\"title\":\"Investigation of Microseismicity and Permeability Evolution in Shale Fractures during Stimulation\",\"authors\":\"Z. Ye, A. Ghassemi\",\"doi\":\"10.2118/201115-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Shear slip of pre-existing fractures can play a crucial role in hydraulic stimulation to enable production from unconventional shale reservoirs. Evidence of the phenomenon is found in microseismic/seismic events induced during stimulation by hydraulic fracturing. However, induced seismicity and permeability evolution in response to fracture shear slip by injection have not been extensively studied in laboratory tests under relevant conditions. In this work, a cylindrical Eagle Ford Shale sample having a single fracture (tensile fracture) was used to perform a laboratory injection test with concurrent acoustic emission (AE) monitoring. In the test, shear slip was induced on the fracture at near critical stress state by injecting pressurized brine water [7% potassium chloride (KCl)]. Sample deformation (stress, displacement), fluid flow (injection pressure, flow rate), and AE signals (hits, events) were all recorded. The data were then used to characterize the fully coupled seismo-hydromechanical response of the shale fracture during shearing. Results show that the induced AE/microseismic events correlate well with the fracture slip and the permeability evolution. Most of the recorded AE hits and events were detected during the seismic-slip interval corresponding to a rapid fracture slip and a large stress drop. As a result of dilatant shear slip, a remarkable enhancement of fracture permeability was achieved. Before this seismic interval, an aseismic-slip interval was evident during the tests, where the fracture slip, associated stress relaxation, and permeability increase were limited. The test results and analyses demonstrate the role of shear slip in permeability enhancement and induced seismicity by hydraulic stimulation for unconventional shale reservoirs.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2118/201115-pa\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/201115-pa\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/201115-pa","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

已有裂缝的剪切滑动在水力增产中发挥着至关重要的作用,从而使非常规页岩储层能够生产。在水力压裂增产期间引发的微震/地震事件中发现了这种现象的证据。然而,在相关条件下的实验室试验中,尚未广泛研究注入引起的地震活动和渗透率对裂缝剪切滑动的响应。在这项工作中,使用具有单一断裂(拉伸断裂)的圆柱形Eagle Ford页岩样品进行实验室注入测试,同时进行声发射(AE)监测。在试验中,通过注入加压盐水[7%氯化钾(KCl)],在接近临界应力状态下在裂缝上引发剪切滑移。记录样品变形(应力、位移)、流体流量(注入压力、流速)和AE信号(撞击、事件)。然后使用这些数据来表征剪切过程中页岩裂缝的完全耦合地震-流体力学响应。结果表明,诱发的声发射/微震事件与裂缝滑移和渗透率演化密切相关。大多数记录的AE撞击和事件都是在地震滑动间隔期间检测到的,对应于快速断裂滑动和大的应力降。由于剪胀剪切滑动,裂缝渗透率显著提高。在该地震间隔之前,在试验过程中出现了明显的抗震滑动间隔,其中断裂滑动、相关应力松弛和渗透率增加受到限制。试验结果和分析结果表明,剪切滑动在非常规页岩储层水力吞吐提高渗透率和诱发地震活动中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Microseismicity and Permeability Evolution in Shale Fractures during Stimulation
Shear slip of pre-existing fractures can play a crucial role in hydraulic stimulation to enable production from unconventional shale reservoirs. Evidence of the phenomenon is found in microseismic/seismic events induced during stimulation by hydraulic fracturing. However, induced seismicity and permeability evolution in response to fracture shear slip by injection have not been extensively studied in laboratory tests under relevant conditions. In this work, a cylindrical Eagle Ford Shale sample having a single fracture (tensile fracture) was used to perform a laboratory injection test with concurrent acoustic emission (AE) monitoring. In the test, shear slip was induced on the fracture at near critical stress state by injecting pressurized brine water [7% potassium chloride (KCl)]. Sample deformation (stress, displacement), fluid flow (injection pressure, flow rate), and AE signals (hits, events) were all recorded. The data were then used to characterize the fully coupled seismo-hydromechanical response of the shale fracture during shearing. Results show that the induced AE/microseismic events correlate well with the fracture slip and the permeability evolution. Most of the recorded AE hits and events were detected during the seismic-slip interval corresponding to a rapid fracture slip and a large stress drop. As a result of dilatant shear slip, a remarkable enhancement of fracture permeability was achieved. Before this seismic interval, an aseismic-slip interval was evident during the tests, where the fracture slip, associated stress relaxation, and permeability increase were limited. The test results and analyses demonstrate the role of shear slip in permeability enhancement and induced seismicity by hydraulic stimulation for unconventional shale reservoirs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信