Sheffer-stroke BE代数上的Neutrosophin结构

Q1 Mathematics
T. Oner, T. Katican, S. Svanidze, A. Rezaei
{"title":"Sheffer-stroke BE代数上的Neutrosophin结构","authors":"T. Oner, T. Katican, S. Svanidze, A. Rezaei","doi":"10.21203/rs.3.rs-588865/v1","DOIUrl":null,"url":null,"abstract":"\n In this study, a neutrosophic N-subalgebra, a (implicative) neutrosophic N-filter, level sets of these neutrosophic N-structures and their properties are introduced on a Sheffer stroke BE-algebras (briefly, SBE-algebras). It is proved that the level set of neutrosophic N-subalgebras ((implicative) neutrosophic N-filter) of this algebra is the SBE-subalgebra ((implicative) SBE-filter) and vice versa. Then it is proved that the family of all neutrosophic N-subalgebras of a SBE-algebra forms a complete distributive modular lattice. We present relationships between upper sets and neutrosophic N-filters of this algebra. Also, it is given that every neutrosophic N-filter of a SBE-algebra is its neutrosophic N-subalgebra but the inverse is generally not true. It is demonstrated that a neutrosophic N-structure on a SBE-algebra defi ned by a (implicative) neutrosophic N-filter of another SBE-algebra and a surjective SBE-homomorphism is a (implicative) neutrosophic N-filter. We present relationships between a neutrosophic N-filter and an implicative neutrosophic N-filter of a SBE-algebra in detail. Finally, certain subsets of a SBE-algebra are determined by means of N-functions and some properties are examined.","PeriodicalId":46897,"journal":{"name":"Neutrosophic Sets and Systems","volume":"42 1","pages":"221-238"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neutrosophic N-structures on Sheffer stroke BE-algebras\",\"authors\":\"T. Oner, T. Katican, S. Svanidze, A. Rezaei\",\"doi\":\"10.21203/rs.3.rs-588865/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, a neutrosophic N-subalgebra, a (implicative) neutrosophic N-filter, level sets of these neutrosophic N-structures and their properties are introduced on a Sheffer stroke BE-algebras (briefly, SBE-algebras). It is proved that the level set of neutrosophic N-subalgebras ((implicative) neutrosophic N-filter) of this algebra is the SBE-subalgebra ((implicative) SBE-filter) and vice versa. Then it is proved that the family of all neutrosophic N-subalgebras of a SBE-algebra forms a complete distributive modular lattice. We present relationships between upper sets and neutrosophic N-filters of this algebra. Also, it is given that every neutrosophic N-filter of a SBE-algebra is its neutrosophic N-subalgebra but the inverse is generally not true. It is demonstrated that a neutrosophic N-structure on a SBE-algebra defi ned by a (implicative) neutrosophic N-filter of another SBE-algebra and a surjective SBE-homomorphism is a (implicative) neutrosophic N-filter. We present relationships between a neutrosophic N-filter and an implicative neutrosophic N-filter of a SBE-algebra in detail. Finally, certain subsets of a SBE-algebra are determined by means of N-functions and some properties are examined.\",\"PeriodicalId\":46897,\"journal\":{\"name\":\"Neutrosophic Sets and Systems\",\"volume\":\"42 1\",\"pages\":\"221-238\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neutrosophic Sets and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-588865/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neutrosophic Sets and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-588865/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文在Sheffer stroke BE代数(简称SBE代数)上引入了一个中性子代数,一个(隐含的)中性滤波器,这些中性N结构的水平集及其性质。证明了该代数的中性子代数N((蕴涵)中性子滤波器)的水平集是SBE子代数((隐含)SBE滤波器),反之亦然。然后证明了SBE代数的所有中性子代数的N子代数族形成了一个完整的分配模格。我们给出了这一代数的上集和中性N滤波器之间的关系。此外,还给出了SBE代数的每一个中子光滑N滤波器都是它的中子光滑N子代数,但其逆一般不是真的。证明了由另一个SBE代数的(蕴涵的)中性纯素N滤子和满射SBE同态定义的SBE代数上的中性纯素N-结构是(隐含的)中性精素N-滤子。我们详细地给出了SBE代数的中性粒细胞N滤子和隐含中性粒细胞N-滤子之间的关系。最后,利用N函数确定了SBE代数的某些子集,并检验了它们的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neutrosophic N-structures on Sheffer stroke BE-algebras
In this study, a neutrosophic N-subalgebra, a (implicative) neutrosophic N-filter, level sets of these neutrosophic N-structures and their properties are introduced on a Sheffer stroke BE-algebras (briefly, SBE-algebras). It is proved that the level set of neutrosophic N-subalgebras ((implicative) neutrosophic N-filter) of this algebra is the SBE-subalgebra ((implicative) SBE-filter) and vice versa. Then it is proved that the family of all neutrosophic N-subalgebras of a SBE-algebra forms a complete distributive modular lattice. We present relationships between upper sets and neutrosophic N-filters of this algebra. Also, it is given that every neutrosophic N-filter of a SBE-algebra is its neutrosophic N-subalgebra but the inverse is generally not true. It is demonstrated that a neutrosophic N-structure on a SBE-algebra defi ned by a (implicative) neutrosophic N-filter of another SBE-algebra and a surjective SBE-homomorphism is a (implicative) neutrosophic N-filter. We present relationships between a neutrosophic N-filter and an implicative neutrosophic N-filter of a SBE-algebra in detail. Finally, certain subsets of a SBE-algebra are determined by means of N-functions and some properties are examined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neutrosophic Sets and Systems
Neutrosophic Sets and Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊介绍: Neutrosophic Sets and Systems (NSS) is an academic journal, published bimonthly online and on paper, that has been created for publications of advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics etc. and their applications in any field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信