Lin-lin Chu , Yu Zhu , Ling Xiong , Rong-yu Huang , Yao-hu Kang , Zhan-peng Liu , Xiao-ming Geng
{"title":"两种滨海盐渍土微喷灌水盐调节研究","authors":"Lin-lin Chu , Yu Zhu , Ling Xiong , Rong-yu Huang , Yao-hu Kang , Zhan-peng Liu , Xiao-ming Geng","doi":"10.1016/j.wse.2022.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to investigate whether saline silt and sandy loam coastal soils could be reclaimed by micro-sprinkler irrigation. The experiments were run using moderately salt-tolerant tall fescue grass. Micro-sprinkler irrigation in three stages was used to regulate soil matric potential at a 20-cm soil depth. Continued regulation of soil water and salt through micro-sprinkler irrigation consistently resulted in an increasingly large low-salinity region. The application of the three stages of soil water–salt regulation resulted in an absence of salt accumulation throughout the soil profile and the conversion of highly saline soils into moderately saline soils. There were increases in the plant height, leaf width, leaf length, and tiller numbers of tall fescue throughout the leaching process. The results showed that micro-sprinkler irrigation in three soil water and salt regulation stages can be used to successfully cultivate tall festuca in highly saline coastal soil. This approach achieved better effects in sandy loam soil than in silt soil. Tall fescue showed greater survival rates in sandy loam soil due to the rapid reclamation process, whereas plant growth was higher in silt soil because of effective water conservation. In sandy loam, soil moisture should be maintained during soil reclamation, and in silt soil, soil root-zone environments optimal for the emergence of plants should be quickly established. Micro-sprinkler irrigation can be successfully applied to the cultivation of tall fescue in coastal heavy saline soils under a three-stage soil water–salt regulation regime.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"16 1","pages":"Pages 106-112"},"PeriodicalIF":3.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Approach of water–salt regulation using micro-sprinkler irrigation in two coastal saline soils\",\"authors\":\"Lin-lin Chu , Yu Zhu , Ling Xiong , Rong-yu Huang , Yao-hu Kang , Zhan-peng Liu , Xiao-ming Geng\",\"doi\":\"10.1016/j.wse.2022.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aimed to investigate whether saline silt and sandy loam coastal soils could be reclaimed by micro-sprinkler irrigation. The experiments were run using moderately salt-tolerant tall fescue grass. Micro-sprinkler irrigation in three stages was used to regulate soil matric potential at a 20-cm soil depth. Continued regulation of soil water and salt through micro-sprinkler irrigation consistently resulted in an increasingly large low-salinity region. The application of the three stages of soil water–salt regulation resulted in an absence of salt accumulation throughout the soil profile and the conversion of highly saline soils into moderately saline soils. There were increases in the plant height, leaf width, leaf length, and tiller numbers of tall fescue throughout the leaching process. The results showed that micro-sprinkler irrigation in three soil water and salt regulation stages can be used to successfully cultivate tall festuca in highly saline coastal soil. This approach achieved better effects in sandy loam soil than in silt soil. Tall fescue showed greater survival rates in sandy loam soil due to the rapid reclamation process, whereas plant growth was higher in silt soil because of effective water conservation. In sandy loam, soil moisture should be maintained during soil reclamation, and in silt soil, soil root-zone environments optimal for the emergence of plants should be quickly established. Micro-sprinkler irrigation can be successfully applied to the cultivation of tall fescue in coastal heavy saline soils under a three-stage soil water–salt regulation regime.</p></div>\",\"PeriodicalId\":23628,\"journal\":{\"name\":\"Water science and engineering\",\"volume\":\"16 1\",\"pages\":\"Pages 106-112\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water science and engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674237022000850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237022000850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Approach of water–salt regulation using micro-sprinkler irrigation in two coastal saline soils
This study aimed to investigate whether saline silt and sandy loam coastal soils could be reclaimed by micro-sprinkler irrigation. The experiments were run using moderately salt-tolerant tall fescue grass. Micro-sprinkler irrigation in three stages was used to regulate soil matric potential at a 20-cm soil depth. Continued regulation of soil water and salt through micro-sprinkler irrigation consistently resulted in an increasingly large low-salinity region. The application of the three stages of soil water–salt regulation resulted in an absence of salt accumulation throughout the soil profile and the conversion of highly saline soils into moderately saline soils. There were increases in the plant height, leaf width, leaf length, and tiller numbers of tall fescue throughout the leaching process. The results showed that micro-sprinkler irrigation in three soil water and salt regulation stages can be used to successfully cultivate tall festuca in highly saline coastal soil. This approach achieved better effects in sandy loam soil than in silt soil. Tall fescue showed greater survival rates in sandy loam soil due to the rapid reclamation process, whereas plant growth was higher in silt soil because of effective water conservation. In sandy loam, soil moisture should be maintained during soil reclamation, and in silt soil, soil root-zone environments optimal for the emergence of plants should be quickly established. Micro-sprinkler irrigation can be successfully applied to the cultivation of tall fescue in coastal heavy saline soils under a three-stage soil water–salt regulation regime.
期刊介绍:
Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.