硅酸钠玻璃的断裂机理

IF 2.1 3区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Jessica M. Rimsza, Reese E. Jones
{"title":"硅酸钠玻璃的断裂机理","authors":"Jessica M. Rimsza,&nbsp;Reese E. Jones","doi":"10.1111/ijag.16594","DOIUrl":null,"url":null,"abstract":"<p>Reactive classical molecular dynamics simulations of sodium silicate glasses, <i>x</i>Na<sub>2</sub>O–(100 − <i>x</i>)SiO<sub>2</sub> (<i>x</i> = 10–30), under quasi-static loading, were performed for the analysis of molecular scale fracture mechanisms. Mechanical properties of the sodium silicate glasses were consistent with experimentally reported values, and the amount of crack propagation varied with reported fracture toughness values. The most crack propagation occurred in NS20 systems (20-mol% Na<sub>2</sub>O) compared with the other simulated compositions. Dissipation via two mechanisms, the first through sodium migration as a lower activation energy process and the second through structural rearrangement as a higher activation energy process, was calculated and accounted for the energy that was not stored elastically or associated with the formation of new fracture surfaces. A correlation between crack propagation and energy dissipation was identified, with systems with higher crack propagation exhibiting less energy dissipation. Sodium silicate glass compositions with lower energy dissipation also exhibited the most sodium movement and structural rearrangement within 10 Å of the crack tip during loading. Therefore, high sodium mobility near the crack tip may enable energy dissipation without requiring formation of structural defects. Therefore, the varying mobilities of the network modifiers near crack tips influence the brittleness and the crack growth rate of modified amorphous oxide systems.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fracture mechanisms of sodium silicate glasses\",\"authors\":\"Jessica M. Rimsza,&nbsp;Reese E. Jones\",\"doi\":\"10.1111/ijag.16594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reactive classical molecular dynamics simulations of sodium silicate glasses, <i>x</i>Na<sub>2</sub>O–(100 − <i>x</i>)SiO<sub>2</sub> (<i>x</i> = 10–30), under quasi-static loading, were performed for the analysis of molecular scale fracture mechanisms. Mechanical properties of the sodium silicate glasses were consistent with experimentally reported values, and the amount of crack propagation varied with reported fracture toughness values. The most crack propagation occurred in NS20 systems (20-mol% Na<sub>2</sub>O) compared with the other simulated compositions. Dissipation via two mechanisms, the first through sodium migration as a lower activation energy process and the second through structural rearrangement as a higher activation energy process, was calculated and accounted for the energy that was not stored elastically or associated with the formation of new fracture surfaces. A correlation between crack propagation and energy dissipation was identified, with systems with higher crack propagation exhibiting less energy dissipation. Sodium silicate glass compositions with lower energy dissipation also exhibited the most sodium movement and structural rearrangement within 10 Å of the crack tip during loading. Therefore, high sodium mobility near the crack tip may enable energy dissipation without requiring formation of structural defects. Therefore, the varying mobilities of the network modifiers near crack tips influence the brittleness and the crack growth rate of modified amorphous oxide systems.</p>\",\"PeriodicalId\":13850,\"journal\":{\"name\":\"International Journal of Applied Glass Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Glass Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16594\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16594","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 2

摘要

对准静态载荷作用下的硅酸钠玻璃xNa2O -(100−x)SiO2 (x = 10-30)进行反应性经典分子动力学模拟,分析其分子尺度断裂机制。硅酸钠玻璃的力学性能与实验报道值一致,裂纹扩展量随报道的断裂韧性值而变化。与其他模拟成分相比,NS20 (20 mol% Na2O)体系中裂纹扩展最多。通过两种机制的耗散,第一种是通过钠迁移作为一个较低的活化能过程,第二种是通过结构重排作为一个较高的活化能过程,计算并解释了没有弹性储存或与新裂缝表面形成相关的能量。发现了裂纹扩展与能量耗散之间的相关性,裂纹扩展越大,系统的能量耗散越小。在加载过程中,能量耗散较低的硅酸钠玻璃组分在裂纹尖端10 Å范围内也表现出最多的钠离子移动和结构重排。因此,裂纹尖端附近的高钠迁移率可以在不形成结构缺陷的情况下实现能量耗散。因此,裂纹尖端附近网络改性剂迁移率的变化影响了改性非晶态氧化物体系的脆性和裂纹扩展速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fracture mechanisms of sodium silicate glasses

Reactive classical molecular dynamics simulations of sodium silicate glasses, xNa2O–(100 − x)SiO2 (x = 10–30), under quasi-static loading, were performed for the analysis of molecular scale fracture mechanisms. Mechanical properties of the sodium silicate glasses were consistent with experimentally reported values, and the amount of crack propagation varied with reported fracture toughness values. The most crack propagation occurred in NS20 systems (20-mol% Na2O) compared with the other simulated compositions. Dissipation via two mechanisms, the first through sodium migration as a lower activation energy process and the second through structural rearrangement as a higher activation energy process, was calculated and accounted for the energy that was not stored elastically or associated with the formation of new fracture surfaces. A correlation between crack propagation and energy dissipation was identified, with systems with higher crack propagation exhibiting less energy dissipation. Sodium silicate glass compositions with lower energy dissipation also exhibited the most sodium movement and structural rearrangement within 10 Å of the crack tip during loading. Therefore, high sodium mobility near the crack tip may enable energy dissipation without requiring formation of structural defects. Therefore, the varying mobilities of the network modifiers near crack tips influence the brittleness and the crack growth rate of modified amorphous oxide systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Glass Science
International Journal of Applied Glass Science MATERIALS SCIENCE, CERAMICS-
CiteScore
4.50
自引率
9.50%
发文量
73
审稿时长
>12 weeks
期刊介绍: The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信